
Ta-Yuan Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile method to incorporate high-affinity ACAT/SOAT1 inhibitor F12511 into stealth liposome-based nanoparticle and demonstration of its efficacy in blocking cholesteryl ester biosynthesis without overt toxicity in neuronal cell culture. Journal of Neuroscience Methods, 2022, 367, 109437.	2.5	5
2	<i>Acat1/Soat1</i> knockout extends the mutant <i>Npc1</i> mouse lifespan and ameliorates functional deficiencies in multiple organelles of mutant cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2201646119.	7.1	16
3	Cholesterol, Atherosclerosis, and APOE in Vascular Contributions to Cognitive Impairment and Dementia (VCID): Potential Mechanisms and Therapy. Frontiers in Aging Neuroscience, 2021, 13, 647990.	3.4	31
4	Blocking cholesterol storage to treat Alzheimer's disease. , 2021, 1, 173-184.		11
5	Nanodisc scaffold peptide (NSPr) replaces detergent by reconstituting acyl-CoA:cholesterol acyltransferase 1 into peptidiscs. Archives of Biochemistry and Biophysics, 2020, 691, 108518.	3.0	4
6	Structural insights into the inhibition mechanism of human sterol O-acyltransferase 1 by a competitive inhibitor. Nature Communications, 2020, 11, 2478.	12.8	49
7	Triton X-100 or octyl glucoside inactivates acyl-CoA:cholesterol acyltransferase 1 by dissociating it from a two-fold dimer to a two-fold monomer. Archives of Biochemistry and Biophysics, 2019, 671, 103-110.	3.0	6
8	A simple method to disrupt and restore subunit interaction of acyl-CoA:cholesterol acyltransferase 1. MethodsX, 2019, 6, 2242-2247.	1.6	2
9	Myeloid Acat1/Soat1 KO attenuates pro-inflammatory responses in macrophages and protects against atherosclerosis in a model of advanced lesions. Journal of Biological Chemistry, 2019, 294, 15836-15849.	3.4	20
10	Myeloid-specific <i>Acat1</i> ablation attenuates inflammatory responses in macrophages, improves insulin sensitivity, and suppresses diet-induced obesity. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E340-E356.	3.5	23
11	Methods for Monitoring ABCA1-Dependent Sterol Release. Methods in Molecular Biology, 2017, 1583, 257-273.	0.9	4
12	ApoE and Lipid Homeostasis in Alzheimer's Disease: Introduction to the Thematic Review Series. Journal of Lipid Research, 2017, 58, 823.	4.2	8
13	Cholesterol and fatty acids regulate cysteine ubiquitylation of ACAT2 through competitive oxidation. Nature Cell Biology, 2017, 19, 808-819.	10.3	81
14	Cellular cholesterol homeostasis and Alzheimer's disease. Journal of Lipid Research, 2017, 58, 2239-2254.	4.2	106
15	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
16	Low-level expression of humanACAT2gene in monocytic cells is regulated by the C/EBP transcription factors. Acta Biochimica Et Biophysica Sinica, 2016, 48, 980-989.	2.0	1
17	The ACAT2 expression of human leukocytes is responsible for the excretion of lipoproteins containing cholesteryl/steryl esters. Acta Biochimica Et Biophysica Sinica, 2016, 48, 990-997.	2.0	3
18	Potentiating the antitumour response of CD8+ T cells by modulating cholesterol metabolism. Nature, 2016, 531, 651-655.	27.8	648

#	Article	IF	CITATIONS
19	Myeloid Acyl-CoA:Cholesterol Acyltransferase 1 Deficiency Reduces Lesion Macrophage Content and Suppresses Atherosclerosis Progression. Journal of Biological Chemistry, 2016, 291, 6232-6244.	3.4	34
20	ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis. Journal of Lipid Research, 2016, 57, 77-88.	4.2	28
21	Acyl-coenzyme A:cholesterol acyltransferase 1 blockage enhances autophagy in the neurons of triple transgenic Alzheimer's disease mouse and reduces human P301L-tau content at the presymptomatic stage. Neurobiology of Aging, 2015, 36, 2248-2259.	3.1	67
22	ACAT1/SOAT1 as a therapeutic target for Alzheimer's disease. Future Medicinal Chemistry, 2015, 7, 2451-2467.	2.3	82
23	Deficiency in the Lipid Exporter ABCA1 Impairs Retrograde Sterol Movement and Disrupts Sterol Sensing at the Endoplasmic Reticulum. Journal of Biological Chemistry, 2015, 290, 23464-23477.	3.4	56
24	ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-1±-processing alteration. Acta Biochimica Et Biophysica Sinica, 2015, 47, gmv101.	2.0	8
25	Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 102-107.	2.5	123
26	Acylâ€coenzymeÂ <scp>A</scp> :cholesterol acyltransferaseÂ1 – significance of singleâ€nucleotide polymorphism at residue 526 and the role of <scp>P</scp> ro347 near the fifth transmembrane domain. FEBS Journal, 2014, 281, 1773-1783.	4.7	16
27	Inhibiting ACAT1/SOAT1 in Microglia Stimulates Autophagy-Mediated Lysosomal Proteolysis and Increases Al̂21–42 Clearance. Journal of Neuroscience, 2014, 34, 14484-14501.	3.6	86
28	The Epigenetic Drug 5-Azacytidine Interferes with Cholesterol and Lipid Metabolism. Journal of Biological Chemistry, 2014, 289, 18736-18751.	3.4	35
29	Acat1 Knockdown Gene Therapy Decreases Amyloid-β in a Mouse Model of Alzheimer's Disease. Molecular Therapy, 2013, 21, 1497-1506.	8.2	84
30	Production of ACAT1 56-kDa isoform in human cells via trans-splicing involving the ampicillin resistance gene. Cell Research, 2013, 23, 1007-1024.	12.0	13
31	A specific cholesterol metabolic pathway is established in a subset of HCCs for tumor growth. Journal of Molecular Cell Biology, 2013, 5, 404-415.	3.3	54
32	Acat1 Gene Ablation in Mice Increases Hematopoietic Progenitor Cell Proliferation in Bone Marrow and Causes Leukocytosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2081-2087.	2.4	17
33	The Cytosolic Adaptor <scp>AP″A</scp> Is Essential for the Trafficking and Function of Niemannâ€Pick Type C Proteins. Traffic, 2013, 14, 458-469.	2.7	17
34	MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochimica Et Biophysica Sinica, 2013, 45, 953-962.	2.0	38
35	A novel mouse model of Niemann–Pick type C disease carrying a D1005G-Npc1 mutation comparable to commonly observed human mutations. Human Molecular Genetics, 2012, 21, 730-750.	2.9	111
36	Cellular Pregnenolone Esterification by Acyl-CoA:Cholesterol Acyltransferase. Journal of Biological Chemistry, 2012, 287, 17483-17492.	3.4	22

#	Article	IF	CITATIONS
37	Membrane-bound O-acyltransferases (MBOATs). Frontiers in Biology, 2011, 6, 177.	0.7	60
38	Cholesterol loading in macrophages stimulates formation of ER-derived vesicles with elevated ACAT1 activity. Journal of Lipid Research, 2010, 51, 1263-1272.	4.2	16
39	Neuronal cholesterol esterification by ACAT1 in Alzheimer's disease. IUBMB Life, 2010, 62, 261-267.	3.4	12
40	Association of ACAT1-Positive Vesicles with Late Endosomes/ Lysosomes in Cholesterol-Rich Human Macrophages. Journal of Atherosclerosis and Thrombosis, 2010, 17, 740-750.	2.0	10
41	Cholesterol loading in macrophages stimulates formation of ER-derived vesicles with elevated ACAT1 activity. Journal of Lipid Research, 2010, 51, 1263-1272.	4.2	22
42	ACAT1 gene ablation increases 24(S)-hydroxycholesterol content in the brain and ameliorates amyloid pathology in mice with AD. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3081-3086.	7.1	170
43	Purification of Recombinant Acyl-Coenzyme A:Cholesterol Acyltransferase 1 (ACAT1) from H293 Cells and Binding Studies between the Enzyme and Substrates Using Difference Intrinsic Fluorescence Spectroscopy. Biochemistry, 2010, 49, 9957-9963.	2.5	24
44	The optional long 5′-untranslated region of human ACAT1 mRNAs impairs the production of ACAT1 protein by promoting its mRNA decay. Acta Biochimica Et Biophysica Sinica, 2009, 41, 30-41.	2.0	9
45	TNF-alpha stimulates the ACAT1 expression in differentiating monocytes to promote the CE-laden cell formation. Journal of Lipid Research, 2009, 50, 1057-1067.	4.2	55
46	Acyl-coenzyme A:cholesterol acyltransferases. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E1-E9.	3.5	367
47	Partial blockage of sterol biosynthesis with a squalene synthase inhibitor in early postnatal Niemann-Pick type C npcnih null mice brains reduces neuronal cholesterol accumulation, abrogates astrogliosis, but may inhibit myelin maturation. Journal of Neuroscience Methods, 2008, 168, 15-25.	2.5	17
48	RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform. Cell Research, 2008, 18, 921-936.	12.0	14
49	Ezetimibe Blocks Internalization of the NPC1L1/Cholesterol Complex. Cell Metabolism, 2008, 7, 469-471.	16.2	47
50	Transport of LDL-derived cholesterol from the NPC1 compartment to the ER involves the trans-Golgi network and the SNARE protein complex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16513-16518.	7.1	105
51	Plasma Membrane Rafts Complete Cholesterol Synthesis by Participating in Retrograde Movement of Precursor Sterols. Journal of Biological Chemistry, 2007, 282, 34994-35004.	3.4	21
52	Functionality of the Seventh and Eighth Transmembrane Domains of Acyl-Coenzyme A:Cholesterol Acyltransferase 1. Biochemistry, 2007, 46, 10063-10071.	2.5	18
53	Cholesterol Sensing, Trafficking, and Esterification. Annual Review of Cell and Developmental Biology, 2006, 22, 129-157.	9.4	517
54	Human Acyl-CoA:cholesterol Acyltransferase (ACAT) and its Potential as a Target for Pharmaceutical Intervention against Atherosclerosis. Acta Biochimica Et Biophysica Sinica, 2006, 38, 151-156.	2.0	45

#	Article	IF	CITATIONS
55	Human ACAT1 gene expression and its involvement in the development of atherosclerosis. Future Cardiology, 2006, 2, 93-99.	1.2	7
56	Human acyl-CoA:cholesterol acyltransferase 2 gene expression in intestinal Caco-2 cells and in hepatocellular carcinoma. Biochemical Journal, 2006, 394, 617-626.	3.7	51
57	Roles of Endogenously Synthesized Sterols in the Endocytic Pathway. Journal of Biological Chemistry, 2006, 281, 23191-23206.	3.4	21
58	Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Biochemical Journal, 2005, 391, 389-397.	3.7	98
59	Two Human ACAT2 mRNA Variants Produced by Alternative Splicing and Coding for Novel Isoenzymes. Acta Biochimica Et Biophysica Sinica, 2005, 37, 797-806.	2.0	2
60	Niemann-Pick Type C Disease and Intracellular Cholesterol Trafficking. Journal of Biological Chemistry, 2005, 280, 20917-20920.	3.4	141
61	The Active Site His-460 of Human Acyl-coenzyme A:Cholesterol Acyltransferase 1 Resides in a Hitherto Undisclosed Transmembrane Domain. Journal of Biological Chemistry, 2005, 280, 37814-37826.	3.4	74
62	The Disulfide Linkage and the Free Sulfhydryl Accessibility of Acyl-Coenzyme A:Cholesterol Acyltransferase 1 As Studied by Using mPEG5000-Maleimideâ€. Biochemistry, 2005, 44, 6537-6546.	2.5	29
63	Binding between the Niemann-Pick C1 protein and a photoactivatable cholesterol analog requires a functional sterol-sensing domain. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12473-12478.	7.1	180
64	Intracellular cholesterol mobilization involved in the ABCA1/apolipoprotein-mediated assembly of high density lipoprotein in fibroblasts. Journal of Lipid Research, 2004, 45, 1943-1951.	4.2	66
65	A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. Journal of Lipid Research, 2004, 45, 582-591.	4.2	90
66	Human Acyl-Coenzyme A:Cholesterol Acyltransferase 1 (acat1) Sequences Located in Two Different Chromosomes (7 and 1) Are Required to Produce a Novel ACAT1 Isoenzyme with Additional Sequence at the N Terminus. Journal of Biological Chemistry, 2004, 279, 46253-46262.	3.4	28
67	A Stable Upstream Stem-loop Structure Enhances Selection of the First 5′-ORF-AUG as a Main Start Codon for Translation Initiation of Human ACAT1 mRNA. Acta Biochimica Et Biophysica Sinica, 2004, 36, 259-268.	2.0	14
68	Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Research, 2004, 14, 315-323.	12.0	64
69	Promotion of tau phosphorylation by MAP kinase Erk1/2 is accompanied by reduced cholesterol level in detergent-insoluble membrane fraction in Niemann-Pick C1-deficient cells. Journal of Neurochemistry, 2003, 84, 1086-1096.	3.9	32
70	Acyl-Coenzyme A:Cholesterol Acyltransferase 2 (ACAT2) Is Induced in Monocyte-Derived Macrophages: In Vivo and In Vitro Studies. Laboratory Investigation, 2003, 83, 1569-1581.	3.7	54
71	Plasma Membrane Cholesterol:Â A Possible Barrier to Intracellular Oxygen in Normal and Mutant CHO Cells Defective in Cholesterol Metabolismâ€. Biochemistry, 2003, 42, 23-29.	2.5	51
72	Cholesterol Is Superior to 7-Ketocholesterol or 7α-Hydroxycholesterol as an Allosteric Activator for Acyl-coenzyme A:Cholesterol Acyltransferase 1. Journal of Biological Chemistry, 2003, 278, 11642-11647.	3.4	61

#	Article	IF	CITATIONS
73	Human Acyl-Coenzyme A:Cholesterol Acyltransferase Expressed in Chinese Hamster Ovary Cells: Membrane Topology and Active Site Location. Molecular Biology of the Cell, 2003, 14, 2447-2460.	2.1	91
74	Distinct Endosomal Compartments in Early Trafficking of Low Density Lipoprotein-derived Cholesterol. Journal of Biological Chemistry, 2003, 278, 27180-27189.	3.4	79
75	Biotinylated Î,-toxin derivative as a probe to examine intracellular cholesterol-rich domains in normal and Niemann-Pick type C1 cells. Journal of Lipid Research, 2003, 44, 1033-1041.	4.2	40
76	Trafficking defects in endogenously synthesized cholesterol in fibroblasts, macrophages, hepatocytes, and glial cells from Niemann-Pick type C1 mice. Journal of Lipid Research, 2003, 44, 1010-1019.	4.2	53
77	Transport of plasma membraneâ€derived cholesterol and the function of Niemannâ€Pick C1 protein. FASEB Journal, 2003, 17, 782-784.	0.5	51
78	Mutant Acyl-coenzyme A:Cholesterol Acyltransferase 1 Devoid of Cysteine Residues Remains Catalytically Active. Journal of Biological Chemistry, 2002, 277, 711-718.	3.4	22
79	Synthesis and biochemical properties of a new photoactivatable cholesterol analog 7,7-azocholestanol and its linoleate ester in Chinese hamster ovary cell lines. Journal of Lipid Research, 2002, 43, 1341-1347.	4.2	27
80	Role of the N-Terminal Hydrophilic Domain of Acyl-Coenzyme A:Cholesterol Acyltransferase 1 on the Enzyme's Quaternary Structure and Catalytic Efficiencyâ€. Biochemistry, 2002, 41, 3762-3769.	2.5	41
81	Synthesis and biochemical properties of a new photoactivatable cholesterol analog 7,7-azocholestanol and its linoleate ester in Chinese hamster ovary cell lines. Journal of Lipid Research, 2002, 43, 1341-7.	4.2	8
82	Organization of Human ACAT-2 Gene and Its Cell-Type-Specific Promoter Activity. Biochemical and Biophysical Research Communications, 2001, 282, 580-588.	2.1	25
83	Roles of acyl-coenzyme A : cholesterol acyltransferase-1 and -2. Current Opinion in Lipidology, 2001, 12, 289-296.	2.7	223
84	Acyl-coenzyme A: cholesterol acyltransferase modulates the generation of the amyloid β-peptide. Nature Cell Biology, 2001, 3, 905-912.	10.3	444
85	Accumulation and Aggregation of Amyloid β-Protein in Late Endosomes of Niemann-Pick Type C Cells. Journal of Biological Chemistry, 2001, 276, 4454-4460.	3.4	137
86	Synergistic Transcriptional Activation of HumanAcyl-coenzyme A: Cholesterol Acyltransterase-1 Gene by Interferon-γ and All-trans-Retinoic Acid THP-1 Cells. Journal of Biological Chemistry, 2001, 276, 20989-20998.	3.4	43
87	Induction of acyl-coenzyme A:cholesterol acyltransferase-1 by 1,25-dihydroxyvitamin D3 or 9-cis-retinoic acid in undifferentiated THP-1 cells. Journal of Lipid Research, 2001, 42, 181-187.	4.2	27
88	Acyl Coenzyme A:Cholesterol Acyltransferase (ACAT) in Macrophage-Derived Foam Cells and Its Distribution in Human Organs Acta Histochemica Et Cytochemica, 2000, 33, 189-194.	1.6	2
89	Fate of Endogenously Synthesized Cholesterol in Niemann-Pick Type C1 Cells. Journal of Biological Chemistry, 2000, 275, 41309-41316.	3.4	78
90	Embryonic Striatal Neurons from Niemann-Pick Type C Mice Exhibit Defects in Cholesterol Metabolism and Neurotrophin Responsiveness. Journal of Biological Chemistry, 2000, 275, 20179-20187.	3.4	79

#	Article	lF	CITATIONS
91	Immunological Quantitation and Localization of ACAT-1 and ACAT-2 in Human Liver and Small Intestine. Journal of Biological Chemistry, 2000, 275, 28083-28092.	3.4	195
92	Role of Niemann-Pick Type C1 Protein in Intracellular Trafficking of Low Density Lipoprotein-derived Cholesterol. Journal of Biological Chemistry, 2000, 275, 4013-4021.	3.4	164
93	Localization of Human Acyl-Coenzyme A:Cholesterol Acyltransferase-1 (ACAT-1) in Macrophages and in Various Tissues. American Journal of Pathology, 2000, 156, 227-236.	3.8	118
94	Human Acyl-CoA:Cholesterol Acyltransferase-1 Is a Homotetrameric Enzyme in Intact Cells and in Vitro. Journal of Biological Chemistry, 1999, 274, 36139-36145.	3.4	72
95	Human Acyl-CoA:Cholesterol Acyltransferase-1 in the Endoplasmic Reticulum Contains Seven Transmembrane Domains. Journal of Biological Chemistry, 1999, 274, 23276-23285.	3.4	80
96	Human Acyl-CoA:Cholesterol Acyltransferase-1 (ACAT-1) Gene Organization and Evidence That the 4.3-Kilobase ACAT-1 mRNA Is Produced from Two Different Chromosomes. Journal of Biological Chemistry, 1999, 274, 11060-11071.	3.4	105
97	Recombinant Acyl-CoA:cholesterol Acyltransferase-1 (ACAT-1) Purified to Essential Homogeneity Utilizes Cholesterol in Mixed Micelles or in Vesicles in a Highly Cooperative Manner. Journal of Biological Chemistry, 1998, 273, 35132-35141.	3.4	119
98	Immunolocalization of Acyl-Coenzyme A:CholesterolO-Acyltransferase in Macrophages. Journal of Biological Chemistry, 1998, 273, 11218-11224.	3.4	52
99	Expression of ACAT-1 Protein in Human Atherosclerotic Lesions and Cultured Human Monocytes-Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 1998, 18, 1568-1574.	2.4	141
100	Immunodepletion experiments suggest that acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) protein plays a major catalytic role in adult human liver, adrenal gland, macrophages, and kidney, but not in intestines. Journal of Lipid Research, 1998, 39, 1722-1727.	4.2	90
101	Summary and Future Perspectives. , 1998, , 289-292.		0
102	Chinese hamster ovary cell mutants affecting cholesterol metabolism. Current Opinion in Lipidology, 1997, 8, 65-71.	2.7	31
103	Niemann-Pick C1 Disease Gene: Homology to Mediators of Cholesterol Homeostasis. Science, 1997, 277, 228-231.	12.6	1,373
104	ACYL-COENZYME A:CHOLESTEROL ACYLTRANSFERASE. Annual Review of Biochemistry, 1997, 66, 613-638.	11.1	479
105	Activation of acyl-coenzyme A:cholesterol acyltransferase activity by cholesterol is not due to altered mRNA levels in HepG2 cells. Lipids and Lipid Metabolism, 1996, 1301, 76-84.	2.6	35
106	Activation of Acyl-Coenzyme A:Cholesterol Acyltransferase by Cholesterol or by Oxysterol in a Cell-free System. Journal of Biological Chemistry, 1995, 270, 685-695.	3.4	157
107	Regulation and Immunolocalization of Acyl-Coenzyme A:Cholesterol Acyltransferase in Mammalian Cells as Studied with Specific Antibodies. Journal of Biological Chemistry, 1995, 270, 29532-29540.	3.4	145
108	Translocation of both lysosomal LDL-derived cholesterol and plasma membrane cholesterol to the endoplasmic reticulum for esterification may require common cellular factors involved in cholesterol egress from the acidic compartments (lysosomes/endosomes). Lipids and Lipid Metabolism, 1995, 1254, 283-294.	2.6	22

#	Article	IF	CITATIONS
109	The structure of acyl coenzyme A-cholesterol acyltransferase and its potential relevance to atherosclerosis. Trends in Cardiovascular Medicine, 1994, 4, 223-230.	4.9	25
110	Somatic cell genetic and biochemical characterization of cell lines resulting from human genomic DNA transfections of Chinese hamster ovary cell mutants defective in sterol-dependent activation of sterol synthesis and LDL receptor expression. Somatic Cell and Molecular Genetics, 1994, 20, 183-194.	0.7	52
111	Localization of acyl coenzyme A:cholesterol acyltransferase gene to human chromosome 1q25. Somatic Cell and Molecular Genetics, 1994, 20, 71-74.	0.7	15
112	15 Acyl Coenzyme A: Cholesterol O-Acyltransferase. The Enzymes, 1983, 16, 523-539.	1.7	31
113	A simple and efficient procedure for the rapid homogenization of cultured animal cells grown in monolayer. Analytical Biochemistry, 1981, 116, 298-302.	2.4	48
114	[6] Aspartate carbamyltransferase (Streptococcus faecalis). Methods in Enzymology, 1978, 51, 41-50.	1.0	5
115	Aspartate transcarbamylase from Streptococcus faecalis. Reverse reaction and binding studies. Biochemistry, 1974, 13, 646-653.	2.5	14
116	Aspartate transcarbamylase from Streptococcus faecalis. Purification, properties, and nature of an allosteric activator site. Biochemistry, 1974, 13, 629-638.	2.5	29
117	Aspartate transcarbamylase from Streptococcus faecalis. Steady-state kinetic analysis. Biochemistry, 1974, 13, 638-645.	2.5	15
118	7 Mammalian ACAT and DGAT2 gene families. Topics in Current Genetics, 0, , 241-265.	0.7	1