James A Dorman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3951014/publications.pdf

Version: 2024-02-01

414414 516710 1,014 35 16 32 citations g-index h-index papers 35 35 35 1912 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Induction Heating of Magnetically Susceptible Nanoparticles for Enhanced Hydrogenation of Oleic Acid. ACS Applied Nano Materials, 2022, 5, 3676-3685.	5.0	4
2	On the enhanced sulfur and coking tolerance of Ni-Co-rare earth oxide catalysts for the dry reforming of methane. Journal of Catalysis, 2021, 393, 215-229.	6.2	46
3	Fluorescent visualization of oil displacement in a microfluidic device for enhanced oil recovery applications. Analyst, The, 2021, 146, 6746-6752.	3 . 5	2
4	Modifying Metastable Sr _{1–<i>x</i>} BO _{3â^'Î′} (B = Nb, Ta, and Mo) Perovskites for Electrode Materials. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29788-29797.	8.0	2
5	Catalytic Depolymerization of Waste Polyolefins by Induction Heating: Selective Alkane/Alkene Production. Industrial & Depois Engineering Chemistry Research, 2021, 60, 15141-15150.	3.7	13
6	Simultaneous Droplet Generation with In-Series Droplet T-Junctions Induced by Gravity-Induced Flow. Micromachines, 2021, 12, 1211.	2.9	4
7	Catalytic Enhancement of Inductively Heated Fe ₃ O ₄ Nanoparticles by Removal of Surface Ligands. ChemSusChem, 2021, 14, 1122-1130.	6.8	8
8	Direct Probing of Fe ₃ O ₄ Nanoparticle Surface Temperatures during Magnetic Heating: Implications for Induction Catalysis. ACS Applied Nano Materials, 2021, 4, 13778-13787.	5 . 0	9
9	Effect of Oxide Ion Distribution on a Uranium Structure in Highly U-Doped RE ₂ Hf ₂ O ₇ (RE = La and Gd) Nanoparticles. Inorganic Chemistry, 2020, 59, 14070-14077.	4.0	13
10	Simulated field-modulated x-ray absorption in titania. Journal of Chemical Physics, 2020, 153, 054110.	3.0	5
11	Adsorption of Polarized Molecules for Interfacial Band Engineering of Doped TiO ₂ Thin Films. Langmuir, 2020, 36, 5839-5846.	3.5	3
12	Photoluminescence detection of symmetry transformations in low-dimensional ferroelectric ABO ₃ perovskites. Journal of Materials Chemistry C, 2020, 8, 10767-10773.	5 . 5	7
13	Enhancing Ce <i>>_x</i> >Zr _{1â€"<i>x</i>} O ₂ Activity for Methane Dry Reforming Using Subsurface Ni Dopants. ACS Catalysis, 2020, 10, 4070-4079.	11.2	99
14	Dipole-Modulated Downconversion Nanoparticles as Label-Free Biological Sensors. ACS Sensors, 2020, 5, 29-33.	7.8	9
15	Role of Ce in Manipulating the Photoluminescence of Tb Doped Y ₂ Zr ₂ 2258-2366.	4.0	29
16	Critical Coupling of Visible Light Extends Hot-Electron Lifetimes for H ₂ O ₂ Synthesis. ACS Applied Materials & Synthesis.	8.0	6
17	Stabilizing the B-site oxidation state in ABO ₃ perovskite nanoparticles. Nanoscale, 2019, 11, 14303-14311.	5. 6	16
18	Effects of Weak Electric Field on the Photoluminescence Behavior of Bi ³⁺ -Doped YVO ₄ :Eu ³⁺ Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 13027-13035.	3.1	16

#	Article	IF	CITATIONS
19	Effect of Moisture on Dopant Segregation in Solid Hosts. Journal of Physical Chemistry C, 2019, 123, 12234-12241.	3.1	11
20	Luminescent nanomaterials for droplet tracking in a microfluidic trapping array. Analytical and Bioanalytical Chemistry, 2019, 411, 157-170.	3.7	17
21	Role of the Metal-Oxide Work Function on Photocurrent Generation in Hybrid Solar Cells. Scientific Reports, 2018, 8, 3559.	3.3	47
22	Weak Field Tuning of Transition-Metal Dopant Hybridization in Solid Hosts. Journal of Physical Chemistry C, 2018, 122, 22699-22708.	3.1	13
23	Influence of substrates and rutile seed layers on the assembly of hydrothermally grown rutile TiO 2 nanorod arrays. Journal of Crystal Growth, 2018, 494, 26-35.	1.5	11
24	Effect of dopant concentration on visible light driven photocatalytic activity of Sn _{1â°x} Ag _x S ₂ . Dalton Transactions, 2016, 45, 16290-16297.	3.3	33
25	Uniform Large-Area Free-Standing Silver Nanowire Arrays on Transparent Conducting Substrates. Journal of the Electrochemical Society, 2016, 163, D447-D452.	2.9	25
26	Decoupling optical and electronic optimization of organic solar cells using high-performance temperature-stable TiO2/Ag/TiO2 electrodes. APL Materials, 2015, 3, .	5.1	21
27	Influence of Interfacial Area on Exciton Separation and Polaron Recombination in Nanostructured Bilayer All-Polymer Solar Cells. ACS Nano, 2014, 8, 12397-12409.	14.6	41
28	Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications. APL Materials, $2014, 2, .$	5.1	136
29	Model for Hydrothermal Growth of Rutile Wires and the Associated Development of Defect Structures. Crystal Growth and Design, 2014, 14, 4658-4663.	3.0	23
30	Control of Recombination Pathways in TiO ₂ Nanowire Hybrid Solar Cells Using Sn ⁴⁺ Dopants. Journal of Physical Chemistry C, 2014, 118, 16672-16679.	3.1	24
31	Erroneous efficiency reports harm organic solar cell research. Nature Photonics, 2014, 8, 669-672.	31.4	195
32	Synergistic effects of interfacial modifiers enhance current and voltage in hybrid solar cells. APL Materials, 2013, 1, .	5.1	16
33	High-Quality White Light Using Core–Shell RE ³⁺ :LaPO ₄ (RE = Eu, Tb, Dy, Ce) Phosphors. Journal of Physical Chemistry C, 2012, 116, 12854-12860.	3.1	60
34	Elucidating the Effects of a Rare-Earth Oxide Shell on the Luminescence Dynamics of Er ³⁺ :Y ₂ O ₃ Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 10333-10340.	3.1	39
35	Optimizing the crystal environment through extended x-ray absorption fine structure to increase the luminescent lifetimes of Er3+ doped Y2O3 nanoparticles. Journal of Applied Physics, 2012, 111, 083529.	2.5	11