
## Robert T Glinwood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39508/publications.pdf Version: 2024-02-01



POREPT T CLINWOOD

| #  | Article                                                                                                                                                                                                                          | IF              | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1  | Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and ecoâ€evolutionary implications. New Phytologist, 2018, 220, 739-749.                                                     | 7.3             | 101          |
| 2  | Barley exposed to aerial allelopathy from thistles (Cirsium spp.) becomes less acceptable to aphids.<br>Ecological Entomology, 2004, 29, 188-195.                                                                                | 2.2             | 81           |
| 3  | Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping. PLoS ONE, 2013, 8, e69431.                                                                                           | 2.5             | 71           |
| 4  | Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component<br>methyl salicylate. Entomologia Experimentalis Et Applicata, 2000, 94, 325-330.                                                | 1.4             | 60           |
| 5  | Change in acceptability of barley plants to aphids after exposure to allelochemicals from couch-grass<br>(Elytrigia repens). Journal of Chemical Ecology, 2003, 29, 261-274.                                                     | 1.8             | 58           |
| 6  | Identification of mosquito repellent odours from Ocimum forskolei. Parasites and Vectors, 2011, 4, 183.                                                                                                                          | 2.5             | 58           |
| 7  | Multivariate statistics coupled to generalized linear models reveal complex use of chemical cues by a parasitoid. Animal Behaviour, 2009, 77, 901-909.                                                                           | 1.9             | 54           |
| 8  | Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod-Plant Interactions, 2009, 3, 215-224.                                                              | 1.1             | 52           |
| 9  | Herbivory by a Phloem-Feeding Insect Inhibits Floral Volatile Production. PLoS ONE, 2012, 7, e31971.                                                                                                                             | 2.5             | 52           |
| 10 | Chemical interaction between undamaged plants – Effects on herbivores and natural enemies.<br>Phytochemistry, 2011, 72, 1683-1689.                                                                                               | 2.9             | 48           |
| 11 | Olfactory learning of plant genotypes by a polyphagous insect predator. Oecologia, 2011, 166, 637-647.                                                                                                                           | 2.0             | 43           |
| 12 | Red:far-red light conditions affect the emission of volatile organic compounds from barley<br>( <i>Hordeum vulgare</i> ), leading to altered biomass allocation in neighbouring plants. Annals of<br>Botany, 2015, 115, 961-970. | 2.9             | 41           |
| 13 | Effect of within-species plant genotype mixing on habitat preference of a polyphagous insect predator.<br>Oecologia, 2011, 166, 391-400.                                                                                         | 2.0             | 40           |
| 14 | Weed–barley interactions affect plant acceptance by aphids in laboratory and field experiments.<br>Entomologia Experimentalis Et Applicata, 2009, 133, 38-45.                                                                    | 1.4             | 36           |
| 15 | Overexpression and Down-Regulation of Barley Lipoxygenase LOX2.2 Affects Jasmonate-Regulated Genes and Aphid Fecundity. International Journal of Molecular Sciences, 2017, 18, 2765.                                             | 4.1             | 35           |
| 16 | Foraging in a complex environment - semiochemicals support searching behaviour of the seven spot<br>ladybird. European Journal of Entomology, 2005, 102, 365-370.                                                                | 1.2             | 35           |
| 17 | Chemical stimuli supporting foraging behaviour of Coccinella septempunctata L. (Coleoptera:) Tj ETQq1 1 0.784                                                                                                                    | 314 rgBT<br>1.2 | /Overlock 10 |
| 18 | Bryophytes can recognize their neighbours through volatile organic compounds. Scientific Reports, 2020, 10, 7405.                                                                                                                | 3.3             | 31           |

Robert T Glinwood

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission. Plant Signaling and Behavior, 2014, 9, e29517.                                                                  | 2.4 | 29        |
| 20 | Infection with an insect virus affects olfactory behaviour and interactions with host plant and natural enemies in an aphid. Entomologia Experimentalis Et Applicata, 2008, 127, 108-117.                                              | 1.4 | 25        |
| 21 | Plant response to touch affects the behaviour of aphids and ladybirds. Arthropod-Plant Interactions, 2014, 8, 171-181.                                                                                                                 | 1.1 | 25        |
| 22 | Pest suppression in cultivar mixtures is influenced by neighborâ€specific plant–plant communication.<br>Ecological Applications, 2018, 28, 2187-2196.                                                                                  | 3.8 | 24        |
| 23 | Aphid Acceptance of Barley Exposed to Volatile Phytochemicals Differs Between Plants Exposed in<br>Daylight and Darkness. Plant Signaling and Behavior, 2007, 2, 321-326.                                                              | 2.4 | 23        |
| 24 | Plant Responses to Brief Touching: A Mechanism for Early Neighbour Detection?. PLoS ONE, 2016, 11, e0165742.                                                                                                                           | 2.5 | 22        |
| 25 | Communication Between Undamaged Plants by Volatiles: the Role of Allelobiosis. , 2006, , 421-434.                                                                                                                                      |     | 19        |
| 26 | Olfactory responses of <i><scp>R</scp>hopalosiphum padi</i> to three maize, potato, and wheat cultivars and the selection of prospective crop border plants. Entomologia Experimentalis Et Applicata, 2015, 157, 241-253.              | 1.4 | 16        |
| 27 | Brassicaceae cover crops reduce Aphanomyces pea root rot without suppressing genetic potential of microbial nitrogen cycling. Plant and Soil, 2015, 392, 227-238.                                                                      | 3.7 | 15        |
| 28 | Effects of Methyl Salicylate on Host Plant Acceptance and Feeding by the Aphid Rhopalosiphum padi.<br>Frontiers in Plant Science, 2021, 12, 710268.                                                                                    | 3.6 | 15        |
| 29 | Transgenerational effects and the cost of ant tending in aphids. Oecologia, 2013, 173, 779-790.                                                                                                                                        | 2.0 | 14        |
| 30 | Ant–aphid mutualism: the influence of ants on the aphid summer cycle. Oikos, 2012, 121, 61-66.                                                                                                                                         | 2.7 | 13        |
| 31 | The effect of 1â€pentadecene on <i>Tribolium castaneum</i> behaviour: Repellent or attractant?. Pest<br>Management Science, 2021, 77, 4034-4039.                                                                                       | 3.4 | 13        |
| 32 | Olfactory response of Myzus persicae (Homoptera: Aphididae) to volatiles from leek and chive:<br>Potential for intercropping with sweet pepper. Acta Agriculturae Scandinavica - Section B Soil and<br>Plant Science, 2007, 57, 87-91. | 0.6 | 8         |
| 33 | Landing Preference and Reproduction of Rhopalosiphum padi (Hemiptera: Aphididae) in the Laboratory<br>on Three Maize, Potato, and Wheat Cultivars. Journal of Insect Science, 2015, 15, 63-63.                                         | 1.5 | 4         |
| 34 | Volatile Chemical Interaction Between Undamaged Plants: Effects at Higher Trophic Levels. Signaling and Communication in Plants, 2010, , 87-98.                                                                                        | 0.7 | 2         |
| 35 | Communication Between Undamaged Plants by Volatiles: the Role of Allelobiosis. , 0, , 421-434.                                                                                                                                         |     | 0         |