
Alexey A Moskalev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3950740/publications.pdf

Version: 2024-02-01

ALEYEV A MOSKALEV

#	Article	IF	CITATIONS
1	Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. , 2020, 11, 216.		921
2	Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget, 2016, 7, 44879-44905.	0.8	381
3	The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Research Reviews, 2013, 12, 661-684.	5.0	290
4	Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging, 2016, 8, 1021-1033.	1.4	266
5	Genome analysis reveals insights into physiology and longevity of the Brandt's bat Myotis brandtii. Nature Communications, 2013, 4, 2212.	5.8	213
6	Genetics and epigenetics of aging and longevity. Cell Cycle, 2014, 13, 1063-1077.	1.3	157
7	Artificial intelligence for aging and longevity research: Recent advances and perspectives. Ageing Research Reviews, 2019, 49, 49-66.	5.0	129
8	Gadd45 proteins: Relevance to aging, longevity and age-related pathologies. Ageing Research Reviews, 2012, 11, 51-66.	5.0	126
9	The DrugAge database of aging-related drugs. Aging Cell, 2017, 16, 594-597.	3.0	121
10	Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell, 2016, 15, 407-415.	3.0	97
11	Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging, 2015, 7, 616-628.	1.4	93
12	Important molecular genetic markers of colorectal cancer. Oncotarget, 2016, 7, 53959-53983.	0.8	91
13	The Digital Ageing Atlas: integrating the diversity of age-related changes into a unified resource. Nucleic Acids Research, 2015, 43, D873-D878.	6.5	83
14	Mesenchymal stem cell treatment improves outcome of COVID-19 patients via multiple immunomodulatory mechanisms. Cell Research, 2021, 31, 1244-1262.	5.7	81
15	Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import. PLoS Genetics, 2014, 10, e1004860.	1.5	80
16	A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock. BMC Genomics, 2015, 16, S8.	1.2	76
17	Towards natural mimetics of metformin and rapamycin. Aging, 2017, 9, 2245-2268.	1.4	74
18	Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms. Biogerontology, 2011, 12, 253-263.	2.0	72

#	Article	IF	CITATIONS
19	Geroprotectors: A Unified Concept and Screening Approaches. , 2017, 8, 354.		67
20	The conundrum of human immune system "senescence― Mechanisms of Ageing and Development, 2020, 192, 111357.	2.2	64
21	Pharmacological Inhibition of Phosphoinositide 3 and TOR Kinases Improves Survival of <i>Drosophila melanogaster</i> . Rejuvenation Research, 2010, 13, 246-247.	0.9	62
22	Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. Scientific Reports, 2015, 5, 15299.	1.6	62
23	Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget, 2018, 9, 14692-14722.	0.8	62
24	Signaling pathway activation drift during aging: Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable to normal middle-age and old-age cells. Aging, 2015, 7, 26-37.	1.4	62
25	Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacological Research, 2015, 100, 228-241.	3.1	60
26	In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging, 2016, 8, 2127-2152.	1.4	56
27	Life span alteration after irradiation in Drosophila melanogaster strains with mutations of Hsf and Hsps. Biogerontology, 2009, 10, 3-11.	2.0	55
28	Pharmacological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster. Aging, 2011, 3, 391-394.	1.4	55
29	Increase of Drosophila melanogaster lifespan due to D-GADD45 overexpression in the nervous system. Biogerontology, 2011, 12, 211-226.	2.0	55
30	Terpenoids as Potential Geroprotectors. Antioxidants, 2020, 9, 529.	2.2	52
31	Geroprotective and Radioprotective Activity of Quercetin, (-)-Epicatechin, and Ibuprofen in Drosophila melanogaster. Frontiers in Pharmacology, 2016, 7, 505.	1.6	51
32	Differential expression of alternatively spliced transcripts related to energy metabolism in colorectal cancer. BMC Genomics, 2016, 17, 1011.	1.2	50
33	Targeting aging mechanisms: pharmacological perspectives. Trends in Endocrinology and Metabolism, 2022, 33, 266-280.	3.1	50
34	Signaling pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs. Frontiers in Genetics, 2014, 5, 49.	1.1	47
35	Influence of non-steroidal anti-inflammatory drugs on <i>Drosophila melanogaster</i> longevity. Oncotarget, 2015, 6, 19428-19444.	0.8	46
36	Effect of Low Doses (5-40 cGy) of Gamma-irradiation on Lifespan and Stress-related Genes Expression Profile in Drosophila melanogaster. PLoS ONE, 2015, 10, e0133840.	1.1	45

#	Article	IF	CITATIONS
37	Radiation-induced life span alteration of Drosophila lines with genotype differences. Biogerontology, 2007, 8, 499-504.	2.0	41
38	Selective anticancer agents suppress aging inDrosophila. Oncotarget, 2013, 4, 1507-1526.	0.8	39
39	The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle, 2012, 11, 4222-4241.	1.3	36
40	Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Research Reviews, 2020, 62, 101097.	5.0	36
41	Molecular markers of paragangliomas/pheochromocytomas. Oncotarget, 2017, 8, 25756-25782.	0.8	36
42	Comparative transcriptomics across 14 <i>Drosophila</i> species reveals signatures of longevity. Aging Cell, 2018, 17, e12740.	3.0	35
43	Innate and Adaptive Immunity in Aging and Longevity: The Foundation of Resilience. , 2020, 11, 1363.		34
44	Effect of lentivirus-mediated shRNA inactivation of HK1, HK2, and HK3 genes in colorectal cancer and melanoma cells. BMC Genetics, 2016, 17, 156.	2.7	33
45	Hallmarks of aging-based dual-purpose disease and age-associated targets predicted using PandaOmics Al-powered discovery engine. Aging, 2022, 14, 2475-2506.	1.4	33
46	Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes. Ageing Research Reviews, 2015, 24, 218-231.	5.0	32
47	Multi-omics approaches to human biological age estimation. Mechanisms of Ageing and Development, 2020, 185, 111192.	2.2	32
48	ARDD 2020: from aging mechanisms to interventions. Aging, 2020, 12, 24484-24503.	1.4	32
49	Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. Scientific Reports, 2019, 9, 9151.	1.6	31
50	Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Research Reviews, 2020, 64, 101188.	5.0	30
51	Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging, 2018, 10, 2428-2458.	1.4	29
52	The influence of pro-longevity gene Gclc overexpression on the age-dependent changes in Drosophila transcriptome and biological functions. BMC Genomics, 2016, 17, 1046.	1.2	28
53	Potential therapeutic approaches for modulating expression and accumulation of defective lamin A in laminopathies and age-related diseases. Journal of Molecular Medicine, 2012, 90, 1361-1389.	1.7	27
54	Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. Aging Cell, 2020, 19, e13158.	3.0	27

#	Article	IF	CITATIONS
55	Exome analysis of carotid body tumor. BMC Medical Genomics, 2018, 11, 17.	0.7	26
56	Mining Gene Expression Data for Pollutants (Dioxin, Toluene, Formaldehyde) and Low Dose of Gamma-Irradiation. PLoS ONE, 2014, 9, e86051.	1.1	25
57	Aging and drug discovery. Aging, 2018, 10, 3079-3088.	1.4	25
58	Protective effects of carotenoid fucoxanthin in fibroblasts cellular senescence. Mechanisms of Ageing and Development, 2020, 189, 111260.	2.2	25
59	The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Frontiers in Pharmacology, 2017, 8, 884.	1.6	23
60	Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in Drosophila. BMC Genomics, 2018, 19, 77.	1.2	23
61	Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends in Food Science and Technology, 2021, 114, 570-584.	7.8	23
62	The CIMP-high phenotype is associated with energy metabolism alterations in colon adenocarcinoma. BMC Medical Genetics, 2019, 20, 52.	2.1	20
63	Genome-Protecting Compounds as Potential Geroprotectors. International Journal of Molecular Sciences, 2020, 21, 4484.	1.8	20
64	Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster. Aging, 2018, 10, 3260-3272.	1.4	20
65	The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology, 2014, 15, 113-127.	2.0	19
66	Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Research Reviews, 2021, 67, 101262.	5.0	19
67	A review of the biomedical innovations for healthy longevity. Aging, 2017, 9, 7-25.	1.4	18
68	Markers of arterial health could serve as accurate non-invasive predictors of human biological and chronological age. Aging, 2017, 9, 1280-1292.	1.4	18
69	The challenges of estimating biological age. ELife, 2020, 9, .	2.8	18
70	Pickering emulsions stabilized by partially acetylated cellulose nanocrystals for oral administration: oils effect and in vivo toxicity. Cellulose, 2021, 28, 2365-2385.	2.4	16
71	Extracellular GAPDH Promotes Alzheimer Disease Progression by Enhancing Amyloid-β Aggregation and Cytotoxicity. , 2021, 12, 1223.		16
72	Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology, 2022, 23, 215-235.	2.0	15

#	Article	IF	CITATIONS
73	Histone H2AX Is Involved in FoxO3a-Mediated Transcriptional Responses to Ionizing Radiation to Maintain Genome Stability. International Journal of Molecular Sciences, 2015, 16, 29996-30014.	1.8	14
74	ls anti-ageing drug discovery becoming a reality?. Expert Opinion on Drug Discovery, 2020, 15, 135-138.	2.5	14
75	The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants, 2020, 9, 1239.	2.2	14
76	The critical impacts of small RNA biogenesis proteins on aging, longevity and age-related diseases. Ageing Research Reviews, 2020, 62, 101087.	5.0	14
77	Spontaneous γH2AX foci in human dermal fibroblasts in relation to proliferation activity and aging. Aging, 2019, 11, 4536-4546.	1.4	14
78	Latest advances in aging research and drug discovery. Aging, 2019, 11, 9971-9981.	1.4	13
79	The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology, 2020, 21, 45-56.	2.0	13
80	Radioprotectors.org: an open database of known and predicted radioprotectors. Aging, 2020, 12, 15741-15755.	1.4	13
81	Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Molecular Biology, 2020, 54, 777-811.	0.4	13
82	Neuron-specific overexpression of core clock genes improves stress-resistance and extends lifespan of Drosophila melanogaster. Experimental Gerontology, 2019, 117, 61-71.	1.2	12
83	Circadian clock genes' overexpression in Drosophila alters diet impact on lifespan. Biogerontology, 2019, 20, 159-170.	2.0	12
84	Drosophila nervous system as a target of aging and anti-aging interventions. Frontiers in Genetics, 2015, 6, 89.	1.1	11
85	Editorial: Should We Treat Aging as a Disease? Academic, Pharmaceutical, Healthcare Policy, and Pension Fund Perspectives. Frontiers in Genetics, 2016, 7, 17.	1.1	11
86	De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evolutionary Biology, 2017, 17, 258.	3.2	11
87	Longevity medicine: upskilling the physicians of tomorrow. The Lancet Healthy Longevity, 2021, 2, e187-e188.	2.0	11
88	Age dynamics of DNA damage and CpG methylation in the peripheral blood leukocytes of mice. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2015, 775, 38-42.	0.4	10
89	Beta-amyloid induces apoptosis of neuronal cells by inhibition of the Arg/N-end rule pathway proteolytic activity. Aging, 2019, 11, 6134-6152.	1.4	10
90	Effects of <i>Abies sibirica</i> terpenes on cancer- and aging-associated pathways in human cells. Oncotarget, 2016, 7, 83744-83754.	0.8	10

#	Article	IF	CITATIONS
91	Deletions of the cystathionine-Î ² -synthase (CBS) and cystathionine-Î ³ -Iyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mechanisms of Ageing and Development, 2022, 203, 111656.	2.2	10
92	Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions. Communications Biology, 2022, 5, .	2.0	10
93	Gadd45 expression correlates with age dependent neurodegeneration in Drosophila melanogaster. Biogerontology, 2015, 16, 53-61.	2.0	9
94	Genetic control of circadian rhythms and aging. Russian Journal of Genetics, 2016, 52, 343-361.	0.2	9
95	Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes. Nucleic Acids Research, 2016, 44, D894-D899.	6.5	9
96	Effect of low-dose irradiation on the lifespan in various strains of Drosophila melanogaster. Russian Journal of Genetics, 2006, 42, 628-635.	0.2	8
97	The Effects of Cloudberry Fruit Extract on Drosophila melanogaster Lifespan and Stress Resistance. Advances in Gerontology, 2019, 9, 254-260.	0.1	8
98	The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax. Frontiers in Genetics, 2019, 10, 149.	1.1	8
99	Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology, 2021, 22, 197-214.	2.0	8
100	The genetic mechanisms of the influence of the light regime on the lifespan of Drosophila melanogaster. Frontiers in Genetics, 2012, 3, 325.	1.1	7
101	From theories of aging to anti-aging interventions. Frontiers in Genetics, 2014, 5, 276.	1.1	7
102	Genetics of aging and longevity. Russian Journal of Genetics: Applied Research, 2017, 7, 369-384.	0.4	7
103	Drosophila melanogaster as a Model for Studying the Epigenetic Basis of Aging. , 2018, , 293-307.		7
104	Anti-aging effects of chlorpropamide depend on mitochondrial complex-II and the production of mitochondrial reactive oxygen species. Acta Pharmaceutica Sinica B, 2022, 12, 665-677.	5.7	7
105	Genetic mechanisms of aging in plants: What can we learn from them?. Ageing Research Reviews, 2022, 77, 101601.	5.0	6
106	Evolutionary ideas on the nature of aging. Advances in Gerontology, 2011, 1, 112-121.	0.1	5
107	Geroprotective Effects of Activation of D-GADD45 DNA Reparation Gene in Drosophila Melanogaster Nervous System. Bulletin of Experimental Biology and Medicine, 2012, 152, 340-343.	0.3	5
108	Exhaustive data mining comparison of the effects of low doses of ionizing radiation, formaldehyde and dioxins. BMC Genomics, 2014, 15, S5.	1.2	5

#	Article	IF	CITATIONS
109	Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila melanogaster. International Journal of Molecular Sciences, 2021, 22, 2396.	1.8	5
110	De Novo Transcriptome Profiling of Brain Tissue from the Annual Killifish Nothobranchius guentheri. Life, 2021, 11, 137.	1.1	5
111	Association of CASR, CALCR, and ORAI1 Genes Polymorphisms With the Calcium Urolithiasis Development in Russian Population. Frontiers in Genetics, 2021, 12, 621049.	1.1	5
112	Radiation-Induced Changes in the Life Span of Laboratory Drosophila melanogaster Strains. Russian Journal of Genetics, 2001, 37, 1094-1095.	0.2	4
113	Effects of unpaired 1 gene overexpression on the lifespan of Drosophila melanogaster. BMC Systems Biology, 2019, 13, 16.	3.0	4
114	Evaluation of the geroprotective effects of withaferin A in Drosophila melanogaster. Aging, 2021, 13, 1817-1841.	1.4	4
115	Chronobiotics KL001 and KS15 Extend Lifespan and Modify Circadian Rhythms of Drosophila melanogaster. Clocks & Sleep, 2021, 3, 429-441.	0.9	4
116	Studying the geroprotective effects of inhibitors suppressing aging -associated signaling cascades in model organisms. Medical News of North Caucasus, 2017, 12, .	0.0	4
117	Geroprotective effects of ×Sorbaronia mitschurinii fruit extract on Drosophila melanogaster. Journal of Berry Research, 2022, 12, 73-92.	0.7	4
118	Comparative Metabolomic Study of Drosophila Species with Different Lifespans. International Journal of Molecular Sciences, 2021, 22, 12873.	1.8	4
119	Meeting Report: Aging Research and Drug Discovery. Aging, 2022, 14, 530-543.	1.4	4
120	An Overview of the Molecular and Cellular Biomarkers of Aging. Healthy Ageing and Longevity, 2019, , 67-78.	0.2	3
121	The Effect of Meclofenoxate on the Transcriptome of Aging Brain of Nothobranchius guentheri Annual Killifish. International Journal of Molecular Sciences, 2022, 23, 2491.	1.8	3
122	Chronic gamma-irradiation effect on Drosophila melanogaster lifespan in generations of wild-type isogenic and heterogenic strains. International Journal of Low Radiation, 2007, 4, 169.	0.1	2
123	Effect of illumination regime on life span in Drosophila melanogaster. Russian Journal of Ecology, 2009, 40, 206-212.	0.3	2
124	Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila. Healthy Ageing and Longevity, 2015, , 39-65.	0.2	2
125	Amyloid-β peptides slightly affect lifespan or antimicrobial peptide gene expression in Drosophila melanogaster. BMC Genetics, 2020, 21, 65.	2.7	2
126	Effects of Siberian fir terpenes extract Abisil on antioxidant activity, autophagy, transcriptome and proteome of human fibroblasts. Aging, 2021, 13, 20050-20080.	1.4	2

#	Article	IF	CITATIONS
127	Role of tumor suppressor genes in aging and longevity mechanisms in Drosophila melanogaster. Russian Journal of Genetics: Applied Research, 2014, 4, 8-14.	0.4	1
128	Influence of preparations containing phytoecdysteroids and plant steroid glycosides on the life span and stress resistance of Drosophila melanogaster. Russian Journal of Genetics: Applied Research, 2016, 6, 215-224.	0.4	1
129	Is Aging a Disease? A Geneticist's Point of View. Advances in Gerontology, 2018, 8, 125-126.	0.1	1
130	Antiaging Effects of Vicatia thibetica de Boiss Root Extract on Caenorhabditis elegans and Doxorubicin-Induced Premature Aging in Adult Mice. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-13.	1.9	1
131	Editorial: Clinical Evaluation Criteria for Aging and Aging-Related Multimorbidity. Frontiers in Genetics, 2021, 12, 764874.	1.1	1
132	Genetic mechanisms of the influence of light and phototransduction on Drosophila melanogaster lifespan. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 878-886.	0.4	1
133	Nutritional Regulation of Aging and Longevity. Healthy Ageing and Longevity, 2021, , 439-464.	0.2	1
134	Aging as a complex of typical pathophysiological processes. Medical News of North Caucasus, 2019, 14,	0.0	1
135	Age Dynamics of Adult Fly Activity in Drosophila Strains with Apoptosis Deregulation after Larval Exposure to Chronic Irradiation. Russian Journal of Genetics, 2004, 40, 212-215.	0.2	0
136	Life span alteration after irradiation in Drosophila Melanogaster strains with mutations of HSF and HSPS. Radioprotection, 2008, 43, .	0.5	0
137	Different approaches to research into the aging process and their implementation in the framework of the "science against aging―complex interdisciplinary program. Russian Journal of General Chemistry, 2010, 80, 1389-1394.	0.3	0
138	Role of stem cell niche in body aging processes. Russian Journal of General Chemistry, 2010, 80, 1476-1481.	0.3	0
139	Role of FOXO transcription factor in radiation adaptive response and hormesis in Drosophila melanogaster. Biophysics (Russian Federation), 2010, 55, 854-858.	0.2	ο
140	The analysis of the survivorship curves in Drosophila melanogaster with D-GADD45 overexpression. Russian Journal of Genetics: Applied Research, 2014, 4, 15-18.	0.4	0
141	Editorial: Proceedings of the 3rd International Conference on Genetics of Aging and Longevity. Frontiers in Genetics, 2016, 7, 119.	1.1	0
142	The effects of cloudberry extract and β-carotene on lifespan of Drosophilla melanogaster. New Biotechnology, 2016, 33, S91.	2.4	0
143	Influence of chronic low-dose rate gamma-irradiation on the life span of Drosophila inbred and outbred strains. Radioprotection, 2008, 43, .	O.5	Ο