David M Nataf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/395073/publications.pdf

Version: 2024-02-01

68 papers

4,026 citations

32 h-index 62 g-index

68 all docs 68
docs citations

68 times ranked 3047 citing authors

#	Article	IF	CITATIONS
1	Is TerzanÂ5 the remnant of a building block of the Galactic bulge? Evidence from APOGEE. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3429-3443.	1.6	1
2	The Similarity of Abundance Ratio Trends and Nucleosynthetic Patterns in the Milky Way Disk and Bulge. Astrophysical Journal, 2021, 909, 77.	1.6	36
3	Buckling Bars in Nearly Face-on Galaxies Observed with MaNGA. Astrophysical Journal, 2021, 909, 125.	1.6	7
4	On the Color–Metallicity Relation of the Red Clump and the Reddening toward the Magellanic Clouds. Astrophysical Journal, 2021, 910, 121.	1.6	8
5	The GALAH+ survey: Third data release. Monthly Notices of the Royal Astronomical Society, 2021, 506, 150-201.	1.6	293
6	Fundamental relations for the velocity dispersion of stars in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1761-1776.	1.6	35
7	Evidence for a high-energy tail in the gamma-ray spectra of globular clusters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5161-5176.	1.6	16
8	The contribution of N-rich stars to the Galactic stellar halo using APOGEE red giants. Monthly Notices of the Royal Astronomical Society, 2020, 500, 5462-5478.	1.6	25
9	The predicted properties of helium-enriched globular cluster progenitors at high redshift. Monthly Notices of the Royal Astronomical Society, 2020, 496, 3222-3234.	1.6	О
10	The Magellanic Edges Survey I: Description and first results. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3055-3075.	1.6	18
11	The Milky Way's bulge star formation history as constrained from its bimodal chemical abundance distribution. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3557-3570.	1.6	18
12	The Bulge Radial Velocity Assay for RR Lyrae Stars (BRAVA-RR) DR2: A Bimodal Bulge?. Astronomical Journal, 2020, 159, 270.	1.9	35
13	The chemical compositions of accreted and <i>inÂsitu</i> galactic globular clusters according to SDSS/APOGEE. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3363-3378.	1.6	55
14	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1641-1670.	1.6	103
15	Evidence from APOGEE for the presence of a major building block of the halo buried in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1385-1403.	1.6	104
16	Exploring the Stellar Age Distribution of the Milky Way Bulge Using APOGEE. Astrophysical Journal, 2020, 901, 109.	1.6	28
17	Strong evidence that the galactic bulge is shining in gamma rays. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 042-042.	1.9	56
18	HERBS II: Detailed chemical compositions of Galactic bulge stars. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5349-5361.	1.6	12

#	Article	IF	Citations
19	Are the Double-mode Bulge RR Lyrae Stars with Identical Period Ratios the Relic of a Disrupted Stellar System?. Astrophysical Journal Letters, 2019, 877, L17.	3.0	6
20	The Relationship between Globular Cluster Mass, Metallicity, and Light-element Abundance Variations. Astronomical Journal, 2019, 158, 14.	1.9	45
21	HERBS I: Metallicity and alpha enhancement along the Galactic bulge minor axis. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3586-3603.	1.6	17
22	The relationship between globular cluster parameters and abundance variations. Proceedings of the International Astronomical Union, 2019, 14, 333-336.	0.0	0
23	Discovery of a nitrogen-enhanced mildly metal-poor binary system: Possible evidence for pollution from an extinct AGB star. Astronomy and Astrophysics, 2019, 631, A97.	2.1	18
24	The GALAH survey: An abundance, age, and kinematic inventory of the solar neighbourhood made with TGAS. Astronomy and Astrophysics, 2019, 624, A19.	2.1	91
25	The K2-HERMES Survey: age and metallicity of the thick disc. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5335-5352.	1.6	54
26	The GALAH survey: co-orbiting stars and chemical tagging. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5302-5315.	1.6	12
27	The GALAH survey: a catalogue of carbon-enhanced stars and CEMP candidates. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3196-3212.	1.6	6
28	The GALAH survey: velocity fluctuations in the Milky Way using Red Clump giants. Monthly Notices of the Royal Astronomical Society, 2019, 482, 4215-4232.	1.6	6
29	The GALAH survey: properties of the Galactic disc(s) in the solar neighbourhood. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5216-5232.	1.6	36
30	Radial Velocities of RR Lyrae Stars in and around NGC 6441. Astronomical Journal, 2018, 155, 171.	1.9	9
31	UKIRT-2017-BLG-001Lb: A Giant Planet Detected through the Dust. Astrophysical Journal Letters, 2018, 857, L8.	3.0	33
32	The Mira-based Distance to the Galactic Center. Astrophysical Journal, 2018, 865, 47.	1.6	11
33	Holistic spectroscopy: complete reconstruction of a wide-field, multiobject spectroscopic image using a photonic comb. Monthly Notices of the Royal Astronomical Society, 2018, 480, 5475-5494.	1.6	10
34	The GALAH survey: verifying abundance trends in the open cluster M67 using non-LTE modelling. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2666-2684.	1.6	41
35	The GALAH Survey: second data release. Monthly Notices of the Royal Astronomical Society, 2018, 478, 4513-4552.	1.6	269
36	The GALAH survey: accurate radial velocities and library of observed stellar template spectra. Monthly Notices of the Royal Astronomical Society, 2018, 481, 645-654.	1.6	24

#	Article	IF	CITATIONS
37	The GALAH survey: chemical tagging of star clusters and new members in the Pleiades. Monthly Notices of the Royal Astronomical Society, 2018, 473, 4612-4633.	1.6	35
38	The GALAH survey: stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere, and metallicity. Monthly Notices of the Royal Astronomical Society, 2018, 478, 228-254.	1.6	28
39	Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations. Nature Astronomy, 2017, 1 , .	4.2	40
40	Was the Milky Way Bulge Formed from the Buckling Disk Instability, Hierarchical Collapse, Accretion of Clumps, or All of the Above?. Publications of the Astronomical Society of Australia, 2017, 34, .	1.3	22
41	The GALAH survey: the data reduction pipeline. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1259-1281.	1.6	60
42	The Controversial Star-Formation History and Helium Enrichment of the Milky Way Bulge. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	28
43	The Interstellar Extinction Towards the Milky Way Bulge with Planetary Nebulae, Red Clump, and RR Lyrae Stars. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	5
44	ULTIMATE: a deployable multiple integral field unit for Subaru. Proceedings of SPIE, 2016, , .	0.8	2
45	BEFORE THE BAR: KINEMATIC DETECTION OF A SPHEROIDAL METAL-POOR BULGE COMPONENT. Astrophysical Journal Letters, 2016, 821, L25.	3.0	82
46	The EMBLA survey – metal-poor stars in the Galactic bulge. Monthly Notices of the Royal Astronomical Society, 2016, 460, 884-901.	1.6	77
47	The GALAH survey: relative throughputs of the 2dF fibre positioner and the HERMES spectrograph from stellar targets. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1069-1081.	1.6	8
48	Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2692-2706.	1.6	98
49	CRITERIA FOR SAMPLE SELECTION TO MAXIMIZE PLANET SENSITIVITY AND YIELD FROM SPACE-BASED MICROLENS PARALLAX SURVEYS. Astrophysical Journal, 2015, 810, 155.	1.6	94
50	The GALAH survey: scientific motivation. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2604-2617.	1.6	535
51	Uncertainties in the interstellar extinction curve and the Cepheid distance to M101. Monthly Notices of the Royal Astronomical Society, 2015, 449, 1171-1176.	1.6	12
52	A HIGH-VELOCITY BULGE RR LYRAE VARIABLE ON A HALO-LIKE ORBIT. Astrophysical Journal Letters, 2015, 808, L12.	3.0	25
53	The X-shaped Milky Way bulge in OGLE-Illa~ photometry and in N-body models. Monthly Notices of the Royal Astronomical Society, 2015, 447, 1535-1549.	1.6	40
54	Extremely metal-poor stars from the cosmic dawn in the bulge of the Milky Way. Nature, 2015, 527, 484-487.	13.7	86

#	Article	IF	CITATIONS
55	OPTIMAL SURVEY STRATEGIES AND PREDICTED PLANET YIELDS FOR THE KOREAN MICROLENSING TELESCOPE NETWORK. Astrophysical Journal, 2014, 794, 52.	1.6	78
56	On the correlation between metallicity and the X-shaped morphology of the Milky Way bulge. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2075-2080.	1.6	21
57	NUCLEOSYNTHESIS IN HELIUM-ENRICHED ASYMPTOTIC GIANT BRANCH MODELS: IMPLICATIONS FOR HEAVY ELEMENT ENRICHMENT IN ω CENTAURI. Astrophysical Journal, 2014, 784, 32.	1.6	32
58	Red giant branch bump star counts in data and stellar models. Monthly Notices of the Royal Astronomical Society, 2014, 445, 3839-3847.	1.6	8
59	The Gaia-ESO Survey: the most metal-poor stars in the Galactic bulge. Monthly Notices of the Royal Astronomical Society, 2014, 445, 4241-4246.	1.6	54
60	A new photometric model of the Galactic bar using red clump giants. Monthly Notices of the Royal Astronomical Society, 2013, 434, 595-605.	1.6	92
61	REDDENING AND EXTINCTION TOWARD THE GALACTIC BULGE FROM OGLE-III: THE INNER MILKY WAY'S <i>R_V</i>) 2.5 EXTINCTION CURVE. Astrophysical Journal, 2013, 769, 88.	1.6	404
62	RED GIANT BRANCH BUMP BRIGHTNESS AND NUMBER COUNTS IN 72 GALACTIC GLOBULAR CLUSTERS OBSERVED WITH THE <i>HUBBLE SPACE TELESCOPE </i> i>. Astrophysical Journal, 2013, 766, 77.	1.6	71
63	Constraining the structure and formation of the Galactic bulge from a field in its outskirts. Astronomy and Astrophysics, 2012, 546, A57.	2.1	67
64	RECONCILING THE GALACTIC BULGE TURNOFF AGE DISCREPANCY WITH ENHANCED HELIUM ENRICHMENT. Astrophysical Journal Letters, 2012, 751, L39.	3.0	27
65	THE OPTICAL GRAVITATIONAL LENSING EXPERIMENT: ANALYSIS OF THE BULGE RR LYRAE POPULATION FROM THE OGLE-III DATA. Astrophysical Journal, 2012, 750, 169.	1.6	63
66	OGLE-III DETECTION OF THE ANOMALOUS GALACTIC BULGE RED GIANT BRANCH BUMP: EVIDENCE OF ENHANCED HELIUM ENRICHMENT. Astrophysical Journal, 2011, 730, 118.	1.6	54
67	THE GRADIENTS IN THE 47 Tuc RED GIANT BRANCH BUMP AND HORIZONTAL BRANCH ARE CONSISTENT WITH A CENTRALLY CONCENTRATED, HELIUM-ENRICHED SECOND STELLAR GENERATION. Astrophysical Journal, 2011, 736, 94.	1.6	49
68	THE SPLIT RED CLUMP OF THE GALACTIC BULGE FROM OGLE-III. Astrophysical Journal Letters, 2010, 721, L28-L32.	3.0	191