Gongwei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3950727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect?. Energy and Environmental Science, 2015, 8, 177-181.	30.8	418
2	An alkaline polymer electrolyte CO ₂ electrolyzer operated with pure water. Energy and Environmental Science, 2019, 12, 2455-2462.	30.8	231
3	Pt Skin on AuCu Intermetallic Substrate: A Strategy to Maximize Pt Utilization for Fuel Cells. Journal of the American Chemical Society, 2014, 136, 9643-9649.	13.7	220
4	Highly Selective Reduction of CO ₂ to C ₂₊ Hydrocarbons at Copper/Polyaniline Interfaces. ACS Catalysis, 2020, 10, 4103-4111.	11.2	220
5	Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy, 2018, 52, 1-10.	16.0	148
6	Chemical Prelithiation of Negative Electrodes in Ambient Air for Advanced Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 8699-8703.	8.0	100
7	Interface-Enhanced Catalytic Selectivity on the C ₂ Products of CO ₂ Electroreduction. ACS Catalysis, 2021, 11, 2473-2482.	11.2	92
8	The Progress of Li–S Batteries—Understanding of the Sulfur Redox Mechanism: Dissolved Polysulfide Ions in the Electrolytes. Advanced Materials Technologies, 2018, 3, 1700233.	5.8	85
9	Electrochemical Impedance and its Applications in Energyâ€ S torage Systems. Small Methods, 2018, 2, 1700342.	8.6	79
10	AuCu intermetallic nanoparticles: surfactant-free synthesis and novel electrochemistry. Journal of Materials Chemistry, 2012, 22, 15769.	6.7	68
11	Dual carbon-protected metal sulfides and their application to sodium-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 13294-13301.	10.3	63
12	High performance lithium-ion and lithium–sulfur batteries using prelithiated phosphorus/carbon composite anode. Energy Storage Materials, 2020, 24, 147-152.	18.0	60
13	Pd skin on AuCu intermetallic nanoparticles: A highly active electrocatalyst for oxygen reduction reaction in alkaline media. Nano Energy, 2016, 29, 268-274.	16.0	55
14	Controlled Prelithiation of SnO ₂ /C Nanocomposite Anodes for Building Full Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 19423-19430.	8.0	55
15	A completely precious metal–free alkaline fuel cell with enhanced performance using a carbon-coated nickel anode. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119883119.	7.1	54
16	Exploring the Composition–Activity Relation of Ni–Cu Binary Alloy Electrocatalysts for Hydrogen Oxidation Reaction in Alkaline Media. ACS Applied Energy Materials, 2019, 2, 3160-3165.	5.1	47
17	Customizable CO ₂ Electroreduction to C ₁ or C ₂₊ Products through Cu _{<i>y</i>} /CeO ₂ Interface Engineering. ACS Catalysis, 2022, 12, 1004-1011.	11.2	47
18	Reduced graphene-oxide/highly ordered mesoporous SiOx hybrid material as an anode material for lithium ion batteries. Electrochimica Acta, 2018, 273, 26-33.	5.2	45

GONGWEI WANG

#	Article	IF	CITATIONS
19	Improving the Antioxidation Capability of the Ni Catalyst by Carbon Shell Coating for Alkaline Hydrogen Oxidation Reaction. ACS Applied Materials & Interfaces, 2020, 12, 31575-31581.	8.0	44
20	Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries. Journal of Materials Chemistry A, 2018, 6, 13286-13293.	10.3	42
21	Intermolecular Energy Gapâ€Induced Formation of Highâ€Valent Cobalt Species in CoOOH Surface Layer on Cobalt Sulfides for Efficient Water Oxidation. Angewandte Chemie, 2022, 134, .	2.0	39
22	Regulation of the activity, selectivity, and durability of Cu-based electrocatalysts for CO2 reduction. Science China Chemistry, 2021, 64, 1660-1678.	8.2	38
23	Quaternized cellulose-supported gold nanoparticles as capillary coatings to enhance protein separation by capillary electrophoresis. Journal of Chromatography A, 2014, 1343, 160-166.	3.7	35
24	Unraveling the composition-activity relationship of Pt Ru binary alloy for hydrogen oxidation reaction in alkaline media. Journal of Power Sources, 2019, 412, 282-286.	7.8	29
25	Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries. Journal of Materials Chemistry A, 2020, 8, 18715-18720.	10.3	24
26	Electrochemical CO2 reduction on heterogeneous cobalt phthalocyanine catalysts with different carbon supports. Chemical Physics Letters, 2020, 754, 137655.	2.6	24
27	Alkaline polymer electrolyte fuel cells without anode humidification and H2 emission. Journal of Power Sources, 2020, 472, 228471.	7.8	23
28	Prelithiation Bridges the Gap for Developing Nextâ€Generation Lithiumâ€Ion Batteries/Capacitors. Small Methods, 2022, 6, .	8.6	23
29	Enhanced mass transport and water management of polymer electrolyte fuel cells via 3-D printed architectures. Journal of Power Sources, 2021, 515, 230636.	7.8	17
30	Viologen/Bromide Dual-Redox Electrochemical Capacitor with Two-Electron Reduction of Viologen. ACS Applied Materials & Interfaces, 2019, 11, 41215-41221.	8.0	16
31	Improving the Catalytic Efficiency of NiFe-LDH/ATO by Air Plasma Treatment for Oxygen Evolution Reaction. Chemical Research in Chinese Universities, 2021, 37, 293-297.	2.6	16
32	Highly Efficient Ni-Fe Based Oxygen Evolution Catalyst Prepared by A Novel Pulse Electrochemical Approach. Electrochimica Acta, 2017, 247, 722-729.	5.2	12
33	Ammoniaâ€Treated Ordered Mesoporous Carbons with Hierarchical Porosity and Nitrogenâ€Doping for Lithiumâ€6ulfur Batteries. ChemistrySelect, 2017, 2, 7160-7168.	1.5	8
34	Preanodized Cu Surface for Selective CO ₂ Electroreduction to C ₁ or C ₂₊ Products. ACS Applied Materials & Interfaces, 2022, 14, 20953-20961.	8.0	8
35	Intermetallic Pt2Si: magnetron-sputtering preparation and electrocatalysis toward ethanol oxidation. Journal of Energy Chemistry, 2014, 23, 265-268.	12.9	6
36	Hydrogen Oxidation Reaction on Pdâ€Ni(OH) 2 Composite Electrocatalysts in an Alkaline Electrolyte. ChemistrySelect, 2020, 5, 7803-7807.	1.5	6

Gongwei Wang

#	Article	IF	CITATIONS
37	Ultrathin Self-Cross-Linked Alkaline Polymer Electrolyte Membrane for APEFC Applications. ACS Applied Energy Materials, 2021, 4, 4297-4301.	5.1	5
38	Application of rock-salt-type Co–Mn oxides for alkaline polymer electrolyte fuel cells. Journal of Power Sources, 2022, 520, 230868.	7.8	5
39	Dendrite-Free Sn Anode with High Reversibility for Aqueous Batteries Enabled by "Water-in-Salt― Electrolyte. ACS Applied Energy Materials, 2020, 3, 5031-5038.	5.1	4
40	Sulfur redox reactions on nanostructured highly oriented pyrolytic graphite (HOPG) electrodes: Direct evidence for superior electrocatalytic performance on defect sites. Carbon, 2017, 119, 460-463.	10.3	3
41	<i>In situ</i> surface enhanced Raman spectroscopy study of electrode–polyelectrolyte interfaces. Faraday Discussions, 2021, 233, 100-111.	3.2	2