Qianqian Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3950494/publications.pdf

Version: 2024-02-01

		687363	839539
20	369	13	18
papers	citations	h-index	g-index
23	23	23	293
23	23	23	293
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nutrient composition and quality traits of dried jujube fruits in seven producing areas based on metabolomics analysis. Food Chemistry, 2022, 385, 132627.	8.2	27
2	Pollination promotes ABA synthesis but not sexual reproduction in the apomictic species <i>Zanthoxylum bungeanum</i> Maxim Tree Physiology, 2021, 41, 1497-1509.	3.1	1
3	ZbAGL11, a class D MADS-box transcription factor of Zanthoxylum bungeanum, is involved in sporophytic apomixis. Horticulture Research, 2021, 8, 23.	6.3	14
4	Genome-wide identification and functional characterization of the PheE2F/DP gene family in Moso bamboo. BMC Plant Biology, 2021, 21, 158.	3.6	6
5	Transcriptome and volatile compounds profiling analyses provide insights into the molecular mechanism underlying the floral fragrance of tree peony. Industrial Crops and Products, 2021, 162, 113286.	5.2	21
6	Transcriptome and anatomical comparisons reveal the specific characteristics and genes involved in distinct types of growing culms. Industrial Crops and Products, 2021, 171, 113865.	5.2	3
7	Integrating full-length transcriptomics and metabolomics reveals the regulatory mechanisms underlying yellow pigmentation in tree peony (Paeonia suffruticosa Andr.) flowers. Horticulture Research, 2021, 8, 235.	6.3	26
8	Genome-Wide Identification and Comparative Profiling of MicroRNAs Reveal Flavonoid Biosynthesis in Two Contrasting Flower Color Cultivars of Tree Peony. Frontiers in Plant Science, 2021, 12, 797799.	3.6	9
9	RNA sequencing and functional analyses reveal regulation of novel drought-responsive, long-non-coding RNA in Zanthoxylum bungeanum Maxim. Plant Growth Regulation, 2020, 90, 425-440.	3.4	7
10	Variation of floral volatiles and fragrance reveals the phylogenetic relationship among nine wild tree peony species. Flavour and Fragrance Journal, 2020, 35, 227-241.	2.6	14
11	Characterization of Metabolites and Transcripts Involved in Flower Pigmentation in Primula vulgaris. Frontiers in Plant Science, 2020, 11, 572517.	3.6	18
12	Dynamic Changes in Metabolite Accumulation and the Transcriptome during Leaf Growth and Development in Eucommia ulmoides. International Journal of Molecular Sciences, 2019, 20, 4030.	4.1	23
13	Comparative transcriptome analyses reveal genes related to pigmentation in the petals of red and white Primula vulgaris cultivars. Physiology and Molecular Biology of Plants, 2019, 25, 1029-1041.	3.1	16
14	Anthocyanin Synthesis and the Expression Patterns of bHLH Transcription Factor Family during Development of the Chinese Jujube Fruit (Ziziphus jujuba Mill.). Forests, 2019, 10, 346.	2.1	19
15	Identification of MicroRNAs and Their Targets Involved in Paeonia rockii Petal Variegation Using High-throughput Sequencing. Journal of the American Society for Horticultural Science, 2019, 144, 118-129.	1.0	5
16	Transcriptomic Analysis of Leaf in Tree Peony Reveals Differentially Expressed Pigments Genes. Molecules, 2017, 22, 324.	3.8	32
17	Biochemical and Comparative Transcriptomic Analyses Identify Candidate Genes Related to Variegation Formation in Paeonia rockii. Molecules, 2017, 22, 1364.	3.8	18
18	Transcriptomic Analysis Reveals Transcription Factors Related to Leaf Anthocyanin Biosynthesis in Paeonia qiui. Molecules, 2017, 22, 2186.	3.8	31

#	ARTICLE	IF	CITATIONS
19	Transcriptomic Analysis of Paeonia delavayi Wild Population Flowers to Identify Differentially Expressed Genes Involved in Purple-Red and Yellow Petal Pigmentation. PLoS ONE, 2015, 10, e0135038.	2. 5	36

Overexpression of Ps-CHI1, a homologue of the chalcone isomerase gene from tree peony (Paeonia) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 20 and Organ Culture, 2014, 116, 285-295.