Liang Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3950445/publications.pdf

Version: 2024-02-01

257450 276875 1,751 52 24 41 citations h-index g-index papers 52 52 52 2082 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31. Surface and Coatings Technology, 2014, 258, 1152-1158.	4.8	188
2	Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnO /HZSM-5 catalysts. Catalysis Today, 2019, 327, 374-381.	4.4	98
3	The NiO electrode materials in electrochemical capacitor: A review. Materials Science in Semiconductor Processing, 2019, 96, 78-90.	4.0	97
4	Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance. Journal of Materials Science and Technology, 2015, 31, 1139-1143.	10.7	90
5	Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy. Journal of Alloys and Compounds, 2018, 764, 913-928.	5.5	88
6	Performance comparison of flame retardant epoxy resins modified by DPO–PHE and DOPO–PHE. Polymer Degradation and Stability, 2018, 156, 89-99.	5.8	77
7	Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys. Metals, 2016, 6, 85.	2.3	71
8	Corrosion Resistance of Superhydrophobic Mg–Al Layered Double Hydroxide Coatings on Aluminum Alloys. Acta Metallurgica Sinica (English Letters), 2015, 28, 1373-1381.	2.9	70
9	Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surface and Coatings Technology, 2017, 328, 121-133.	4.8	67
10	Synthesis of rare earth doped TiO ₂ nanorods as photocatalysts for lignin degradation. Nanoscale, 2015, 7, 16695-16703.	5.6	63
11	Aqueous-phase hydrodeoxygenation of lignin monomer eugenol: Influence of Si/Al ratio of HZSM-5 on catalytic performances. Catalysis Today, 2014, 234, 145-152.	4.4	61
12	Corrosion of in-situ grown MgAl-LDH coating on aluminum alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 3498-3504.	4.2	59
13	Degradation aspects of endocrine disrupting chemicals: A review on photocatalytic processes and photocatalysts. Applied Catalysis A: General, 2020, 597, 117547.	4.3	57
14	Effect of acidity and porosity of alkali-treated ZSM-5 zeolite on eugenol hydrodeoxygenation. Catalysis Today, 2015, 258, 90-95.	4.4	48
15	Promotional effect of HZSM-5 on the catalytic oxidation of toluene over MnO _x /HZSM-5 catalysts. Catalysis Science and Technology, 2016, 6, 4260-4270.	4.1	46
16	Corrosion resistance of Mgâ^'Al LDH/Mg(OH)2/silaneâ^'Ce hybrid coating on magnesium alloy AZ31. Transactions of Nonferrous Metals Society of China, 2020, 30, 2967-2979.	4.2	45
17	A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Frontiers of Materials Science, 2018, 12, 198-206.	2.2	44
18	An Overview of Selective Oxidation of Alcohols: Catalysts, Oxidants and Reaction Mechanisms. Catalysis Surveys From Asia, 2016, 20, 13-22.	2.6	41

#	Article	IF	CITATIONS
19	A novel acyl phosphine compound as difunctional photoinitiator for free radical polymerization. Progress in Organic Coatings, 2019, 135, 34-40.	3.9	38
20	Comparing Cr, and N only doping with (Cr, N)-codoping for enhancing visible light reactivity of TiO2. Applied Catalysis B: Environmental, 2011, 110, 148-153.	20.2	37
21	Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity. Applied Surface Science, 2015, 343, 181-187.	6.1	37
22	In vitro corrosion of Mg–Ca alloy — The influence of glucose content. Frontiers of Materials Science, 2017, 11, 284-295.	2.2	33
23	Kinetics study for the oxidative dehydrogenation of ethyl lactate to ethyl pyruvate over MoVNbO based catalysts. Chemical Engineering Journal, 2016, 296, 217-224.	12.7	25
24	Synthesis of P(O)-S organophosphorus compounds by dehydrogenative coupling reaction of P(O)H compounds with aryl thiols in the presence of base and air. Tetrahedron, 2017, 73, 3133-3138.	1.9	25
25	Corrosion resistance of dodecanethiol-modified magnesium hydroxide coating on AZ31 magnesium alloy. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	24
26	Influence of crystal size of HZSM-5 on hydrodeoxygenation of eugenol in aqueous phase. Catalysis Communications, 2014, 56, 123-127.	3.3	23
27	High photodegradation ability of dyes by Fe(III)-tartrate/TiO2 nanotubular photocatalyst supported via photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 334, 20-25.	3.9	18
28	Corrosion resistance and hydrophobicity of myristic acid modified Mg-Al LDH/Mg(OH)2 steam coating on magnesium alloy AZ31. Frontiers of Materials Science, 2020, 14, 96-107.	2.2	18
29	An investigation on the aqueous-phase hydrodeoxygenation of various methoxy-substituted lignin monomers on Pd/C and HZSM-5 catalysts. RSC Advances, 2016, 6, 104398-104406.	3.6	15
30	lon diffusion-assisted preparation of Ni3S2/NiO nanocomposites for electrochemical capacitors. Inorganic Chemistry Communication, 2019, 107, 107469.	3.9	15
31	Corrosion resistance of a silane/ceria modified Mg-Al-layered double hydroxide on AA5005 aluminum alloy. Frontiers of Materials Science, 2019, 13, 420-430.	2.2	13
32	Aerobic Oxidative Dehydrogenation of Ethyl Lactate Over Reduced MoVNbOx Catalysts. Catalysis Letters, 2019, 149, 840-850.	2.6	11
33	Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites. Journal Physics D: Applied Physics, 2015, 48, 355305.	2.8	9
34	Natural antioxidant from bamboo leaves for the processing stability of polypropylene. Journal of Thermal Analysis and Calorimetry, 2020, , $1.$	3.6	9
35	Natural compounds from <scp><i>Punica granatum</i></scp> peel as multiple stabilizers for polyethylene. Polymer Engineering and Science, 2020, 60, 2761-2769.	3.1	9
36	Highly active Mo-V-based bifunctional catalysts for catalytic conversion of lignin dimer model compounds at room temperature. Inorganic Chemistry Communication, 2020, 116, 107910.	3.9	9

#	Article	IF	CITATIONS
37	Glass fiber reinforced <scp>PET</scp> modified by fewâ€layer black phosphorus. Polymers for Advanced Technologies, 2021, 32, 3515-3522.	3.2	9
38	Preparation of poly(methyl methacrylate) microspheres via photopolymerization initiated by LED light source. Colloid and Polymer Science, 2020, 298, 1285-1291.	2.1	8
39	Effect of post heat treatment on microstructure and photocatalytic activities of TiO2 nanoribbons. Applied Surface Science, 2011, 257, 7932-7937.	6.1	7
40	Puerarin, an efficient natural stabilizer for both polyethylene and <scp>polypropylene</scp> . Journal of Applied Polymer Science, 2020, 137, 49599.	2.6	7
41	Gas-liquid diffusion synthesis of different Ni(OH)2 nanostructures for their supercapacitive performance. Chemical Physics, 2019, 525, 110395.	1.9	6
42	Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy: Effects of citric acid pretreatment and intermetallic compounds. Journal of Magnesium and Alloys, 2023, 11, 2967-2979.	11.9	6
43	Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism. Journal of Alloys and Compounds, 2011, 509, 6061-6066.	5.5	5
44	Catalytic Dechlorination of Carbon Tetrachloride in Liquid Phase with Methanol as H-Donor Over Ag/C Catalyst. Journal of Nanoscience and Nanotechnology, 2014, 14, 7315-7318.	0.9	5
45	Cr ₂ O ₃ Nanoparticles Modified TiO ₂ Nanotubes for Enhancing Visible Photoelectrochemical Performance. Journal of Nanoscience and Nanotechnology, 2014, 14, 7022-7026.	0.9	5
46	Visible Light Driven VO ₂ /gâ€C ₃ N ₄ Zâ€Scheme Composite Photocatalysts for Selective Oxidation of DLâ€1â€Phenylethyl Alcohol under Visâ€LEDs Irradiation and Aerobic Oxidation. ChemistrySelect, 2021, 6, 2101-2110.	1.5	5
47	Facile synthesis of C, N-TiO ₂ nanorods via layered Ti 3 O 7 2 â^' -TMAH interlaminar bonding interaction and their enhanced catalytic performance. Materials Research Express, 2020, 7, 025022.	1.6	3
48	Synthesis of glutamate intercalated Mg-Al layered double hydroxides: influence of stirring and aging time. Journal of Dispersion Science and Technology, 2020, , 1-9.	2.4	2
49	Mo-V-Nb-O-based catalysts for low-temperature selective oxidation of Cα-OH lignin model compounds. Frontiers of Materials Science, 2020, 14, 52-61.	2,2	2
50	Enhanced Visibleâ€Light Photocatalytic Activity by the Comprehensive Effects of Mesoporous and Nâ€Doping at the Mesoâ€Nâ€TiO ₂ Nanocatalysts. ChemistrySelect, 2021, 6, 6029-6036.	1.5	2
51	Bifunctional free radical photoinitiator based on syringaldehyde. Polymers for Advanced Technologies, 2022, 33, 1617-1627.	3.2	1
52	Effect of Nb on catalyst nanoparticle sizes and catalytic activities of H2O2-mediated oxidative dehydrogenation of Cα–OH lignin model compounds. Journal of Materials Science, 2020, 55, 10492-10504.	3.7	0