Martin Wiklund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3950274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Acoustofluidics 14: Applications of acoustic streaming in microfluidic devices. Lab on A Chip, 2012, 12, 2438.	6.0	383
2	Acoustofluidics 12: Biocompatibility and cell viability in microfluidic acoustic resonators. Lab on A Chip, 2012, 12, 2018.	6.0	272
3	The 2019 surface acoustic waves roadmap. Journal Physics D: Applied Physics, 2019, 52, 353001.	2.8	236
4	Forthcoming Lab on a Chip tutorial series on acoustofluidics: Acoustofluidics—exploiting ultrasonic standing wave forces and acoustic streaming in microfluidic systems for cell and particle manipulation. Lab on A Chip, 2011, 11, 3579.	6.0	186
5	Ultrasound-controlled cell aggregation in a multi-well chip. Lab on A Chip, 2010, 10, 2727.	6.0	121
6	Acoustofluidics for biomedical applications. Nature Reviews Methods Primers, 2022, 2, .	21.2	95
7	NK cells converge lytic granules to promote cytotoxicity and prevent bystander killing. Journal of Cell Biology, 2016, 215, 875-889.	5.2	87
8	A three-dimensional ultrasonic cage for characterization of individual cells. Applied Physics Letters, 2008, 93, 063901.	3.3	69
9	Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. Lab on A Chip, 2015, 15, 3222-3231.	6.0	69
10	Spatial confinement of ultrasonic force fields in microfluidic channels. Ultrasonics, 2009, 49, 112-119.	3.9	63
11	Imaging Immune Surveillance of Individual Natural Killer Cells Confined in Microwell Arrays. PLoS ONE, 2010, 5, e15453.	2.5	62
12	Live cell imaging in a micro-array of acoustic traps facilitates quantification of natural killer cell heterogeneity. Integrative Biology (United Kingdom), 2013, 5, 712-719.	1.3	55
13	Acoustic formation of multicellular tumor spheroids enabling on-chip functional and structural imaging. Lab on A Chip, 2018, 18, 2466-2476.	6.0	51
14	Measuring acoustic energy density in microchannel acoustophoresis using a simple and rapid light-intensity method. Lab on A Chip, 2012, 12, 2337.	6.0	47
15	Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip. Lab on A Chip, 2015, 15, 3341-3349.	6.0	47
16	Ultrasonic-trap-enhanced selectivity in capillary electrophoresis. Ultrasonics, 2003, 41, 329-333.	3.9	46
17	Acoustofluidics 21: ultrasound-enhanced immunoassays and particle sensors. Lab on A Chip, 2013, 13, 25-39.	6.0	38
18	Acoustic separation of living and dead cells using high density medium. Lab on A Chip, 2020, 20, 1981-1990.	6.0	34

MARTIN WIKLUND

#	Article	lF	CITATIONS
19	Novel Microchip-Based Tools Facilitating Live Cell Imaging and Assessment of Functional Heterogeneity within NK Cell Populations. Frontiers in Immunology, 2012, 3, 300.	4.8	30
20	Ultrasound-Induced Cell–Cell Interaction Studies in a Multi-Well Microplate. Micromachines, 2014, 5, 27-49.	2.9	28
21	Ultrasonic Based Tissue Modelling and Engineering. Micromachines, 2018, 9, 594.	2.9	27
22	Influence of acoustic streaming on ultrasonic particle manipulation in a 100-well ring-transducer microplate. Journal of Micromechanics and Microengineering, 2013, 23, 035008.	2.6	24
23	A Quantitative Study of the Secondary Acoustic Radiation Force on Biological Cells during Acoustophoresis. Micromachines, 2020, 11, 152.	2.9	21
24	On-chip ultrasonic sample preparation for cell based assays. RSC Advances, 2015, 5, 74304-74311.	3.6	20
25	Acoustic micro-vortexing of fluids, particles and cells in disposable microfluidic chips. Biomedical Microdevices, 2016, 18, 71.	2.8	18
26	Acoustofluidics 18: Microscopy for acoustofluidic micro-devices. Lab on A Chip, 2012, 12, 3221.	6.0	17
27	Microparticles for selective protein determination in capillary electrophoresis. Electrophoresis, 2001, 22, 2384-2390.	2.4	15
28	Fluorescence-microscopy-based image analysis for analyte-dependent particle doublet detection in a single-step immunoagglutination assay. Analytical Biochemistry, 2005, 338, 90-101.	2.4	15
29	Investigation of polymer-shelled microbubble motions in acoustophoresis. Ultrasonics, 2016, 70, 275-283.	3.9	15
30	Acoustic dipole and monopole effects in solid particle interaction dynamics during acoustophoresis. Journal of the Acoustical Society of America, 2019, 145, 3311-3319.	1.1	15
31	Acoustic trapping based on surface displacement of resonance modes. Journal of the Acoustical Society of America, 2021, 149, 1445-1453.	1.1	15
32	Unravelling the Acoustic and Thermal Responses of Perfluorocarbon Liquid Droplets Stabilized with Cellulose Nanofibers. Langmuir, 2019, 35, 13090-13099.	3.5	12
33	Ultrasonic Manipulation of Single Cells. Methods in Molecular Biology, 2012, 853, 177-196.	0.9	12
34	Ultrasound-Based Scaffold-Free Core-Shell Multicellular Tumor Spheroid Formation. Micromachines, 2021, 12, 329.	2.9	8
35	Single cell organization and cell cycle characterization of DNA stained multicellular tumor spheroids. Scientific Reports, 2021, 11, 17076.	3.3	8
36	Affinityâ€beadâ€mediated acoustophoresis: A novel tool in cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 915-917.	1.5	2

#	Article	IF	CITATIONS
37	Ultrasound-Enhanced Immunoassays and Particle Sensors. , 2014, , 420-451.		2
38	Measuring the Compressibility of Cellulose Nanofiber-Stabilized Microdroplets Using Acoustophoresis. Micromachines, 2021, 12, 1465.	2.9	1
39	On-chip acoustic sample preparation for cell studies and diagnostics. Proceedings of Meetings on Acoustics, 2013, , .	0.3	0