Nicole Wenderoth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3950143/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 2014, 19, 659-667.	7.9	1,882
2	A technical guide to tDCS, and related non-invasive brain stimulation tools. Clinical Neurophysiology, 2016, 127, 1031-1048.	1.5	998
3	Systems Neuroplasticity in the Aging Brain: Recruiting Additional Neural Resources for Successful Motor Performance in Elderly Persons. Journal of Neuroscience, 2008, 28, 91-99.	3.6	431
4	Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 2004, 8, 18-25.	7.8	425
5	Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Scientific Data, 2017, 4, 170010.	5.3	422
6	Neural Basis of Aging: The Penetration of Cognition into Action Control. Journal of Neuroscience, 2005, 25, 6787-6796.	3.6	378
7	Proprioceptive sensibility in the elderly: Degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 2009, 33, 271-278.	6.1	316
8	Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. NeuroImage, 2003, 19, 764-776.	4.2	288
9	The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour. European Journal of Neuroscience, 2005, 22, 235-246.	2.6	270
10	Changes in Brain Activation during the Acquisition of a Multifrequency Bimanual Coordination Task: From the Cognitive Stage to Advanced Levels of Automaticity. Journal of Neuroscience, 2005, 25, 4270-4278.	3.6	260
11	Changes in brain activation during the acquisition of a new bimanual coordination task. Neuropsychologia, 2004, 42, 855-867.	1.6	209
12	Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron, 2019, 103, 702-718.e5.	8.1	198
13	Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 642-651.	1.9	186
14	Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage, 2004, 21, 1416-1427.	4.2	183
15	Whole brain myelin mapping using T1- and T2-weighted MR imaging data. Frontiers in Human Neuroscience, 2014, 8, 671.	2.0	163
16	Brain Activity during Ankle Proprioceptive Stimulation Predicts Balance Performance in Young and Older Adults. Journal of Neuroscience, 2011, 31, 16344-16352.	3.6	162
17	Mapping the mouse brain with rs-fMRI: An optimized pipeline for functional network identification. NeuroImage, 2015, 123, 11-21.	4.2	161
18	High-intensity interval training evokes larger serum BDNF levels compared with intense continuous exercise. Journal of Applied Physiology, 2015, 119, 1363-1373.	2.5	160

#	Article	IF	CITATIONS
19	Detecting large-scale networks in the human brain using high-density electroencephalography. Human Brain Mapping, 2017, 38, 4631-4643.	3.6	155
20	Action and Emotion Recognition from Point Light Displays: An Investigation of Gender Differences. PLoS ONE, 2011, 6, e20989.	2.5	153
21	Transcranial Random Noise Stimulation of Visual Cortex: Stochastic Resonance Enhances Central Mechanisms of Perception. Journal of Neuroscience, 2016, 36, 5289-5298.	3.6	152
22	Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females. Social Cognitive and Affective Neuroscience, 2016, 11, 1002-1016.	3.0	151
23	Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis. NeuroImage, 2020, 205, 116278.	4.2	151
24	Aging and Inhibitory Control of Action: Cortico-Subthalamic Connection Strength Predicts Stopping Performance. Journal of Neuroscience, 2012, 32, 8401-8412.	3.6	149
25	Motor Learning with Augmented Feedback: Modality-Dependent Behavioral and Neural Consequences. Cerebral Cortex, 2011, 21, 1283-1294.	2.9	142
26	The neural control of bimanual movements in the elderly: Brain regions exhibiting ageâ€related increases in activity, frequencyâ€induced neural modulation, and taskâ€specific compensatory recruitment. Human Brain Mapping, 2010, 31, 1281-1295.	3.6	134
27	Task-Specific Effect of Transcranial Direct Current Stimulation on Motor Learning. Frontiers in Human Neuroscience, 2013, 7, 333.	2.0	132
28	The neural basis of central proprioceptive processing in older versus younger adults: An important sensory role for right putamen. Human Brain Mapping, 2012, 33, 895-908.	3.6	131
29	Structural Basis of Large-Scale Functional Connectivity in the Mouse. Journal of Neuroscience, 2017, 37, 8092-8101.	3.6	129
30	Parieto-premotor Areas Mediate Directional Interference During Bimanual Movements. Cerebral Cortex, 2004, 14, 1153-1163.	2.9	123
31	Beyond Autism: Introducing the Dialectical Misattunement Hypothesis and a Bayesian Account of Intersubjectivity. Psychopathology, 2017, 50, 355-372.	1.5	121
32	Estimating a neutral reference for electroencephalographic recordings: the importance of using a high-density montage and a realistic head model. Journal of Neural Engineering, 2015, 12, 056012.	3.5	111
33	Recognizing Biological Motion and Emotions from Point-Light Displays in Autism Spectrum Disorders. PLoS ONE, 2012, 7, e44473.	2.5	111
34	Promises, Pitfalls, and Basic Guidelines for Applying Machine Learning Classifiers to Psychiatric Imaging Data, with Autism as an Example. Frontiers in Psychiatry, 2016, 7, 177.	2.6	108
35	Force requirements of observed object lifting are encoded by the observer's motor system: a TMS study. European Journal of Neuroscience, 2010, 31, 1144-1153.	2.6	106
36	Underconnectivity of the superior temporal sulcus predicts emotion recognition deficits in autism. Social Cognitive and Affective Neuroscience, 2014, 9, 1589-1600.	3.0	106

#	Article	IF	CITATIONS
37	How are observed actions mapped to the observer's motor system? Influence of posture and perspective. Neuropsychologia, 2009, 47, 415-422.	1.6	101
38	Deep sleep maintains learning efficiency of the human brain. Nature Communications, 2017, 8, 15405.	12.8	97
39	Detecting Large-Scale Brain Networks Using EEG: Impact of Electrode Density, Head Modeling and Source Localization. Frontiers in Neuroinformatics, 2018, 12, 4.	2.5	95
40	Functional Brain Activation Associated with Inhibitory Control Deficits in Older Adults. Cerebral Cortex, 2016, 26, 12-22.	2.9	89
41	Sex differences in human virtual water maze performance: Novel measures reveal the relative contribution of directional responding and spatial knowledge. Behavioural Brain Research, 2010, 208, 408-414.	2.2	85
42	Is the human primary motor cortex activated by muscular or direction-dependent features of observed movements?. Cortex, 2009, 45, 1148-1155.	2.4	84
43	Is Motor Learning Mediated by tDCS Intensity?. PLoS ONE, 2013, 8, e67344.	2.5	81
44	Observing how others lift light or heavy objects: Which visual cues mediate the encoding of muscular force in the primary motor cortex?. Neuropsychologia, 2010, 48, 2082-2090.	1.6	78
45	Abnormalities and Cue Dependence of Rhythmical Upper-Limb Movements in Parkinson Patients With Freezing of Gait. Neurorehabilitation and Neural Repair, 2012, 26, 636-645.	2.9	78
46	Guidelines for TMS/tES clinical services and research through the COVID-19 pandemic. Brain Stimulation, 2020, 13, 1124-1149.	1.6	78
47	Reduced Basal Ganglia Function When Elderly Switch between Coordinated Movement Patterns. Cerebral Cortex, 2010, 20, 2368-2379.	2.9	77
48	Homologous involvement of striatum and prefrontal cortex in rodent and human water maze learning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3131-3136.	7.1	76
49	Information processing in human parieto-frontal circuits during goal-directed bimanual movements. NeuroImage, 2006, 31, 264-278.	4.2	75
50	Freezing in Parkinson's disease: A spatiotemporal motor disorder beyond gait. Movement Disorders, 2012, 27, 254-263.	3.9	74
51	Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity. Journal of Neuroscience, 2017, 37, 4766-4777.	3.6	73
52	Primate homologs of mouse cortico-striatal circuits. ELife, 2020, 9, .	6.0	73
53	Dysfunctional Autism Risk Genes Cause Circuit-Specific Connectivity Deficits With Distinct Developmental Trajectories. Cerebral Cortex, 2018, 28, 2495-2506.	2.9	72
54	Age-related changes in brain activation underlying single- and dual-task performance: Visuomanual drawing and mental arithmetic. Neuropsychologia, 2011, 49, 2400-2409.	1.6	69

#	Article	IF	CITATIONS
55	Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain. Chaos, 2017, 27, 047405.	2.5	68
56	Shared and connection-specific intrinsic interactions in the default mode network. NeuroImage, 2019, 200, 474-481.	4.2	64
57	Disrupted prediction errors index social deficits in autism spectrum disorder. Brain, 2017, 140, 235-246.	7.6	63
58	Revealing the quality of movement: A meta-analysis review to quantify the thresholds to pathological variability during standing and walking. Neuroscience and Biobehavioral Reviews, 2016, 68, 111-119.	6.1	62
59	Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: An fMRI study. Cortex, 2008, 44, 482-493.	2.4	58
60	Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making. PLoS Computational Biology, 2018, 14, e1006301.	3.2	58
61	Dual-task interference during initial learning of a new motor task results from competition for the same brain areas. Neuropsychologia, 2010, 48, 2517-2527.	1.6	57
62	Passive somatosensory discrimination tasks in healthy volunteers: Differential networks involved in familiar versus unfamiliar shape and length discrimination. NeuroImage, 2005, 26, 441-453.	4.2	55
63	Anodal tDCS over the Primary Motor Cortex Facilitates Long-Term Memory Formation Reflecting Use-Dependent Plasticity. PLoS ONE, 2015, 10, e0127270.	2.5	55
64	Spatial interference during bimanual coordination: Differential brain networks associated with control of movement amplitude and direction. Human Brain Mapping, 2005, 26, 286-300.	3.6	54
65	Unimanual muscle activation increases interhemispheric inhibition from the active to the resting hemisphere. Neuroscience Letters, 2008, 445, 209-213.	2.1	54
66	The Corticospinal Tract: A Biomarker to Categorize Upper Limb Functional Potential in Unilateral Cerebral Palsy. Frontiers in Pediatrics, 2015, 3, 112.	1.9	53
67	Assessing age-related gray matter decline with voxel-based morphometry depends significantly on segmentation and normalization procedures. Frontiers in Aging Neuroscience, 2014, 6, 124.	3.4	52
68	Connectivity-based parcellation reveals distinct cortico-striatal connectivity fingerprints in Autism Spectrum Disorder. NeuroImage, 2018, 170, 412-423.	4.2	52
69	Mapping pathological changes in brain structure by combining T1- and T2-weighted MR imaging data. Neuroradiology, 2015, 57, 917-928.	2.2	48
70	Observing how others lift light or heavy objects: time-dependent encoding of grip force in the primary motor cortex. Psychological Research, 2012, 76, 503-513.	1.7	47
71	Gone for 60Âseconds: Reactivation length determines motor memory degradation during reconsolidation. Cortex, 2014, 59, 138-145.	2.4	47
72	Automated detection and labeling of high-density EEG electrodes from structural MR images. Journal of Neural Engineering, 2016, 13, 056003.	3.5	47

#	Article	IF	CITATIONS
73	Neural correlates of motor dysfunction in children with traumatic brain injury: exploration of compensatory recruitment patterns. Brain, 2009, 132, 684-694.	7.6	46
74	P3b amplitude as a signature of cognitive decline in the older population: An EEG study enhanced by Functional Source Separation. NeuroImage, 2019, 184, 535-546.	4.2	46
75	Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism. NeuroImage: Clinical, 2016, 11, 494-507.	2.7	45
76	Directional interference during bimanual coordination: is interlimb coupling mediated by afferent or efferent processes. Behavioural Brain Research, 2003, 139, 177-195.	2.2	44
77	Intensity Inhomogeneity Correction of Structural MR Images: A Data-Driven Approach to Define Input Algorithm Parameters. Frontiers in Neuroinformatics, 2016, 10, 10.	2.5	44
78	Involvement of the Primary Motor Cortex in Controlling Movements Executed with the Ipsilateral Hand Differs between Left- and Right-handers. Journal of Cognitive Neuroscience, 2011, 23, 3456-3469.	2.3	43
79	Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate. Human Brain Mapping, 2015, 36, 1265-1277.	3.6	43
80	Frequencyâ€dependent functional connectivity in resting state networks. Human Brain Mapping, 2020, 41, 5187-5198.	3.6	43
81	Shared neural resources between left and right interlimb coordination skills: The neural substrate of abstract motor representations. NeuroImage, 2010, 49, 2570-2580.	4.2	42
82	Learning a New Bimanual Coordination Pattern Is Influenced by Existing Attractors. Motor Control, 2002, 6, 166-182.	0.6	41
83	Hemispheric Asymmetries of the Premotor Cortex are Task Specific as Revealed by Disruptive TMS During Bimanual Versus Unimanual Movements. Cerebral Cortex, 2010, 20, 2842-2851.	2.9	41
84	Adaptive optimal basis set for BCG artifact removal in simultaneous EEG-fMRI. Scientific Reports, 2018, 8, 8902.	3.3	41
85	Cortical Excitation:Inhibition Imbalance Causes Abnormal Brain Network Dynamics as Observed in Neurodevelopmental Disorders. Cerebral Cortex, 2020, 30, 4922-4937.	2.9	41
86	Ipsilateral Coordination Deficits and Central Processing Requirements Associated With Coordination as a Function of Aging. Journals of Gerontology - Series B Psychological Sciences and Social Sciences, 2004, 59, P225-P232.	3.9	39
87	The eWrist — A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. , 2017, 2017, 726-733.		39
88	Monetary, Food, and Social Rewards Induce Similar Pavlovian-to-Instrumental Transfer Effects. Frontiers in Behavioral Neuroscience, 2016, 10, 247.	2.0	39
89	Structural and Functional Cortical Connectivity Mediating Cross Education of Motor Function. Journal of Neuroscience, 2017, 37, 2555-2564.	3.6	38
90	The coalition of constraints during coordination of the ipsilateral and heterolateral limbs. Experimental Brain Research, 2006, 174, 367-375.	1.5	36

#	Article	IF	CITATIONS
91	Interaction of sound and sight during action perception: Evidence for shared modality-dependent action representations. Neuropsychologia, 2009, 47, 2593-2599.	1.6	36
92	Excitability of the Motor Cortex Ipsilateral to the Moving Body Side Depends on Spatio-Temporal Task Complexity and Hemispheric Specialization. PLoS ONE, 2011, 6, e17742.	2.5	36
93	Movement Observation Improves Early Consolidation of Motor Memory. Journal of Neuroscience, 2011, 31, 11515-11520.	3.6	35
94	Learning of a New Bimanual Coordination Pattern Is Governed by Three Distinct Processes. Motor Control, 2001, 5, 23-35.	0.6	33
95	Bimanual Training Reduces Spatial Interference. Journal of Motor Behavior, 2003, 35, 296-308.	0.9	32
96	Neural activity related to volitional regulation of cortical excitability. ELife, 2018, 7, .	6.0	31
97	Functional Organization of the Action Observation Network in Autism: A Graph Theory Approach. PLoS ONE, 2015, 10, e0137020.	2.5	31
98	Hemispheric asymmetries of motor versus nonmotor processes during (visuo)motor control. Human Brain Mapping, 2011, 32, 1311-1329.	3.6	30
99	Quantitative Evaluation of Intensity Inhomogeneity Correction Methods for Structural MR Brain Images. Neuroinformatics, 2016, 14, 5-21.	2.8	30
100	Corticostriatal connectivity fingerprints: Probability maps based on restingâ€state functional connectivity. Human Brain Mapping, 2017, 38, 1478-1491.	3.6	30
101	Directional invariance during loading-related modulations of muscle activity: evidence for motor equivalence. Experimental Brain Research, 2003, 148, 62-76.	1.5	29
102	Combinatorial brain decoding of people's whereabouts during visuospatial navigation. Frontiers in Neuroscience, 2013, 7, 78.	2.8	27
103	Characterization and wearability evaluation of a fully portable wrist exoskeleton for unsupervised training after stroke. Journal of NeuroEngineering and Rehabilitation, 2020, 17, 132.	4.6	27
104	Visual guidance modulates hemispheric asymmetries during an interlimb coordination task. NeuroImage, 2010, 50, 1566-1577.	4.2	26
105	Frontoparietal involvement in passively guided shape and length discrimination: a comparison between subcortical stroke patients and healthy controls. Experimental Brain Research, 2012, 220, 179-189.	1.5	26
106	Neural processing of biological motion in autism: An investigation of brain activity and effective connectivity. Scientific Reports, 2017, 7, 5612.	3.3	26
107	Motor facilitation during action observation: The role of M1 and PMv in grasp predictions. Cortex, 2016, 75, 180-192.	2.4	24
108	Inhibiting mGluR5 activity by AFQ056/Mavoglurant rescues circuit-specific functional connectivity in Fmr1 knockout mice. NeuroImage, 2019, 191, 392-402.	4.2	24

#	Article	IF	CITATIONS
109	Amygdala–Hippocampal Connectivity Is Associated With Endogenous Levels of Oxytocin and Can Be Altered byÂExogenously Administered Oxytocin in AdultsÂWith Autism. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 655-663.	1.5	24
110	Neurorehabilitation From a Distance: Can Intelligent Technology Support Decentralized Access to Quality Therapy?. Frontiers in Robotics and AI, 2021, 8, 612415.	3.2	24
111	Learning and transfer of bimanual multifrequency patterns: effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 2006, 170, 543-554.	1.5	23
112	Oxytocin treatment attenuates amygdala activity in autism: a treatment-mechanism study with long-term follow-up. Translational Psychiatry, 2020, 10, 383.	4.8	23
113	Combining constraint-induced movement therapy and action-observation training in children with unilateral cerebral palsy: a randomized controlled trial. BMC Pediatrics, 2018, 18, 250.	1.7	22
114	Oxytocin induces long-lasting adaptations within amygdala circuitry in autism: a treatment-mechanism study with randomized placebo-controlled design. Neuropsychopharmacology, 2020, 45, 1141-1149.	5.4	22
115	Randomized controlled trial combining constraint-induced movement therapy and action-observation training in unilateral cerebral palsy: clinical effects and influencing factors of treatment response. Therapeutic Advances in Neurological Disorders, 2020, 13, 175628641989806.	3.5	22
116	Corticospinal Tract Wiring and Brain Lesion Characteristics in Unilateral Cerebral Palsy: Determinants of Upper Limb Motor and Sensory Function. Neural Plasticity, 2018, 2018, 1-13.	2.2	21
117	Using noise for the better: The effects of transcranial random noise stimulation on the brain and behavior. Neuroscience and Biobehavioral Reviews, 2022, 138, 104702.	6.1	21
118	Influence of oxytocin on emotion recognition from body language: A randomized placebo-controlled trial. Psychoneuroendocrinology, 2016, 72, 182-189.	2.7	20
119	Food-Predicting Stimuli Differentially Influence Eye Movements and Goal-Directed Behavior in Normal-Weight, Overweight, and Obese Individuals. Frontiers in Psychiatry, 2017, 8, 230.	2.6	20
120	Inter- and intralimb transfer of a bimanual task: generalisability of limb dissociation. Behavioural Brain Research, 2004, 154, 535-547.	2.2	19
121	Observing shadow motions: Resonant activity within the observer's motor system?. Neuroscience Letters, 2009, 461, 240-244.	2.1	19
122	Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Experimental Brain Research, 2011, 212, 143-152.	1.5	19
123	Action Perception in Individuals with Congenital Blindness or Deafness: How Does the Loss of a Sensory Modality from Birth Affect Perception-induced Motor Facilitation?. Journal of Cognitive Neuroscience, 2011, 23, 1080-1087.	2.3	18
124	Uncertainty in contextual and kinematic cues jointly modulates motor resonance in primary motor cortex. Journal of Neurophysiology, 2019, 121, 1451-1464.	1.8	18
125	Transcranial Random Noise Stimulation Acutely Lowers the Response Threshold of Human Motor Circuits. Journal of Neuroscience, 2021, 41, 3842-3853.	3.6	18
126	Human motor fatigability as evoked by repetitive movements results from a gradual breakdown of surround inhibition. ELife, 2019, 8, .	6.0	18

#	Article	IF	CITATIONS
127	Load dependence of simulated central tremor. Biological Cybernetics, 1999, 80, 285-290.	1.3	17
128	Learning and Transfer of an Ipsilateral Coordination Task: Evidence for a Dual-layer Movement Representation. Journal of Cognitive Neuroscience, 2005, 17, 1460-1470.	2.3	17
129	Reconsolidation of Motor Memories Is a Time-Dependent Process. Frontiers in Human Neuroscience, 2016, 10, 408.	2.0	17
130	Altering brain dynamics with transcranial random noise stimulation. Scientific Reports, 2019, 9, 4029.	3.3	17
131	Changes in endogenous oxytocin levels after intranasal oxytocin treatment in adult men with autism: An exploratory study with long-term follow-up. European Neuropsychopharmacology, 2021, 43, 147-152.	0.7	17
132	Transcranial Random Noise Stimulation Modulates Neural Processing of Sensory and Motor Circuits, from Potential Cellular Mechanisms to Behavior: A Scoping Review. ENeuro, 2022, 9, ENEURO.0248-21.2021.	1.9	16
133	Heart–Brain Interactions in the MR Environment: Characterization of the Ballistocardiogram in EEG Signals Collected During Simultaneous fMRI. Brain Topography, 2018, 31, 337-345.	1.8	15
134	Optogenetic activation of striatal D1R and D2R cells differentially engages downstream connected areas beyond the basal ganglia. Cell Reports, 2021, 37, 110161.	6.4	15
135	Changes in Corticomotor Excitability and Intracortical Inhibition of the Primary Motor Cortex Forearm Area Induced by Anodal tDCS. PLoS ONE, 2014, 9, e101496.	2.5	14
136	Finger somatotopy is preserved after tetraplegia but deteriorates over time. ELife, 2021, 10, .	6.0	14
137	Dependence of peripheral tremor on mechanical perturbations: a modeling study. Biological Cybernetics, 1999, 80, 103-108.	1.3	13
138	Visual cues influence motor coordination: behavioral results and potential neural mechanisms mediating perception–action coupling and response selection. Progress in Brain Research, 2009, 174, 179-188.	1.4	13
139	GriFT: A Device for Quantifying Physiological and Pathological Mirror Movements in Children. IEEE Transactions on Biomedical Engineering, 2018, 65, 857-865.	4.2	13
140	Attentional Demands of Movement Observation as Tested by a Dual Task Approach. PLoS ONE, 2011, 6, e27292.	2.5	12
141	Reinstating verbal memories with virtual contexts: Myth or reality?. PLoS ONE, 2019, 14, e0214540.	2.5	11
142	Training wrist extensor function and detecting unwanted movement strategies in an EMG-controlled visuomotor task. , 2017, 2017, 1549-1555.		10
143	Effects of Transcranial Direct Current Stimulation on the Recognition of Bodily Emotions from Point-Light Displays. Frontiers in Human Neuroscience, 2015, 9, 438.	2.0	9
144	Perception—Action Coupling during Bimanual Coordination: The Role of Visual Perception in the Coalition of Constraints That Govern Bimanual Action. Journal of Motor Behavior, 2004, 36, 394-398.	0.9	8

#	Article	IF	CITATIONS
145	Movement observation affects sensorimotor memory when lifting a familiar object. Cortex, 2012, 48, 638-640.	2.4	8
146	A Day Awake Attenuates Motor Learning-Induced Increases in Corticomotor Excitability. Frontiers in Human Neuroscience, 2016, 10, 138.	2.0	8
147	Motor Learning Triggers Neuroplastic Processes While Awake and During Sleep. Exercise and Sport Sciences Reviews, 2018, 46, 152-159.	3.0	7
148	Boosting Action Observation and Motor Imagery to Promote Plasticity and Learning. Neural Plasticity, 2018, 2018, 1-3.	2.2	7
149	Bimanual Directional Interference: The Effect of Normal versus Augmented Visual Information Feedback on Learning and Transfer. Motor Control, 2004, 8, 33-50.	0.6	6
150	Changing the brain with multimodal mirrors: Combining visual and somatosensory stimulation to enhance motor plasticity. Clinical Neurophysiology, 2015, 126, 1065-1066.	1.5	6
151	Muscle-specific modulation of indirect inputs to primary motor cortex during action observation. Experimental Brain Research, 2020, 238, 1735-1744.	1.5	6
152	Mental individuation of imagined finger movements can be achieved using TMS-based neurofeedback. NeuroImage, 2021, 242, 118463.	4.2	6
153	Neural Networks Involved in Cyclical Interlimb Coordination as Revealed by Medical Imaging Techniques. , 2004, , 187-222.		6
154	Observing back pain provoking lifting actions modulates corticomotor excitability of the observer's primary motor cortex. Neuropsychologia, 2017, 101, 1-9.	1.6	5
155	Comparison of Particle Filter to Established Filtering Methods in Electromyography Biofeedback. Biomedical Signal Processing and Control, 2020, 60, 101949.	5.7	4
156	Response to comment on: Exp Brain Res. 2011 May 5th. Transcranial magnetic stimulation of macaque frontal eye fields decreases saccadic reaction time. Pierre Pouget PhD, Nicolas Wattiez MSc and Antoni Valero-Cabre MDPhD. Experimental Brain Research, 2012, 218, 157-158.	1.5	0
157	Assessing Rhythmic Visual Entrainment and Reinstatement of Brain Oscillations to Modulate Memory Performance. Frontiers in Behavioral Neuroscience, 2020, 14, 118.	2.0	0