
Thales R Machado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949996/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Applied Catalysis B: Environmental, 2018, 238, 198-211.	20.2	53
2	Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes. Ceramics International, 2018, 44, 236-245.	4.8	36
3	Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag ₂ WO ₄ Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS Applied Bio Materials, 2019, 2, 824-837.	4.6	30
4	Pigments based on Cr and Sb doped TiO 2 prepared by microemulsion-mediated solvothermal synthesis for inkjet printing on ceramics. Dyes and Pigments, 2015, 116, 106-113.	3.7	28
5	A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. Journal of Solid State Chemistry, 2017, 249, 64-69.	2.9	24
6	Influence of Cu substitution on the structural ordering, photocatalytic activity and photoluminescence emission of Ag Cu PO4 powders. Applied Surface Science, 2018, 440, 61-72.	6.1	24
7	α-AgVO ₃ Decorated by Hydroxyapatite (Ca ₁₀ (PO ₄) ₆ (OH) ₂): Tuning Its Photoluminescence Emissions and Bactericidal Activity. Inorganic Chemistry, 2019, 58, 5900-5913.	4.0	22
8	From Complex Inorganic Oxides to Ag–Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS Omega, 2018, 3, 9880-9887.	3.5	19
9	Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 11310-11318.	3.1	16
10	In Situ Growth of Bi Nanoparticles on NaBiO ₃ , δ-, and β-Bi ₂ O ₃ Surfaces: Electron Irradiation and Theoretical Insights. Journal of Physical Chemistry C, 2019, 123, 5023-5030.	3.1	14
11	Designing biocompatible and multicolor fluorescent hydroxyapatite nanoparticles for cell-imaging applications. Materials Today Chemistry, 2019, 14, 100211.	3.5	14
12	Rational Design of W-Doped Ag ₃ PO ₄ as an Efficient Antibacterial Agent and Photocatalyst for Organic Pollutant Degradation. ACS Omega, 2020, 5, 23808-23821.	3.5	14
13	Enhanced photocatalytic and antifungal activity of hydroxyapatite/α-AgVO3 composites. Materials Chemistry and Physics, 2020, 252, 123294.	4.0	14
14	Structural, morphological and photoluminescence properties of β-Ag2MoO4 doped with Eu3+. Chemical Papers, 2021, 75, 1869-1882.	2.2	14
15	Facile microwave-assisted hydrothermal synthesis of hexagonal sodium tungsten bronze and its high response to NO2. Materials Letters, 2016, 185, 197-200.	2.6	13
16	Laser/Electron Irradiation on Indium Phosphide (InP) Semiconductor: Promising Pathways to In Situ Formation of Indium Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800237.	2.3	12
17	Proofâ€ofâ€Concept Studies Directed toward the Formation of Metallic Ag Nanostructures from Ag 3 PO 4 Induced by Electron Beam and Femtosecond Laser. Particle and Particle Systems Characterization, 2019, 36, 1800533.	2.3	10
18	Connecting morphology and photoluminescence emissions in β-Ag2MoO4 microcrystals. Ceramics International, 2022, 48, 3740-3750.	4.8	9

THALES R MACHADO

#	ARTICLE	IF	CITATIONS
19	Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst. Materials Chemistry and Physics, 2022, 280, 125710.	4.0	7
20	Evidence for the formation of metallic In after laser irradiation of InP. Journal of Applied Physics, 2019, 126, .	2.5	4
21	Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence. Chemical Engineering Journal, 2022, 443, 136443.	12.7	3
22	Synthesis and Characterization of Nanostructured BaO Solutions: Application in Conservation of Wall Paintings. Lecture Notes in Computer Science, 2012, , 801-808.	1.3	1
23	High photocatalytic activity of Ag/Ag3PO4:W heterostructure formed by femtosecond laser irradiation. Ecletica Quimica, 2022, 47, 20-27.	0.5	0