

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949920/publications.pdf

Version: 2024-02-01

XIA LI

#	Article	lF	CITATIONS
1	Tumor microenvironment-regulated nanoplatforms for the inhibition of tumor growth and metastasis in chemo-immunotherapy. Journal of Materials Chemistry B, 2022, 10, 3637-3647.	2.9	6
2	Synergistic anti-tumor efficacy of a hollow mesoporous silica-based cancer vaccine and an immune checkpoint inhibitor at the local site. Acta Biomaterialia, 2022, 145, 235-245.	4.1	13
3	Tumor microenvironment regulation - enhanced radio - immunotherapy. , 2022, 138, 212867.		5
4	Construction of Fe ₃ O ₄ -Loaded Mesoporous Carbon Systems for Controlled Drug Delivery. ACS Applied Bio Materials, 2021, 4, 5304-5311.	2.3	14
5	A nanoscale metal organic frameworks-based vaccine synergises with PD-1 blockade to potentiate anti-tumour immunity. Nature Communications, 2020, 11, 3858.	5.8	59
6	An MRI-visible immunoadjuvant based on hollow Gd ₂ O ₃ nanospheres for cancer immunotherapy. Chemical Communications, 2020, 56, 8186-8189.	2.2	8
7	An immuno-potentiating vehicle made of mesoporous silica-zinc oxide micro-rosettes with enhanced doxorubicin loading for combined chemoimmunotherapy. Chemical Communications, 2019, 55, 961-964.	2.2	8
8	Synergistical chemotherapy and cancer immunotherapy using dual drug-delivering and immunopotentiating mesoporous silica. Applied Materials Today, 2019, 16, 102-111.	2.3	24
9	Rod-Scale Design Strategies for Immune-Targeted Delivery System toward Cancer Immunotherapy. ACS Nano, 2019, 13, 7705-7715.	7.3	40
10	Tuning inflammation response via adjusting microstructure of hydroxyapatite and biomolecules modification. Colloids and Surfaces B: Biointerfaces, 2019, 177, 496-505.	2.5	10
11	Si-doping increases the adjuvant activity of hydroxyapatite nanorods. Colloids and Surfaces B: Biointerfaces, 2019, 174, 300-307.	2.5	16
12	Aluminum Hydroxide Nanosheets with Structure-dependent Storage and Transportation toward Cancer Chemotherapy. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, , 1.	0.6	1
13	Synergistic effects of stellated fibrous mesoporous silica and synthetic dsRNA analogues for cancer immunotherapy. Chemical Communications, 2018, 54, 1057-1060.	2.2	21
14	Tailoring inorganic nanoadjuvants towards next-generation vaccines. Chemical Society Reviews, 2018, 47, 4954-4980.	18.7	95
15	Mesoporous Cagedâ€Î³â€AlOOHâ€Doubleâ€Stranded RNA Analog Complexes for Cancer Immunotherapy. Advanced Biology, 2018, 2, 1700114.	3.0	21
16	Hollow boron nitride nanospheres as boron reservoir for prostate cancer treatment. Nature Communications, 2017, 8, 13936.	5.8	109
17	Hollow ZnO Nanospheres Enhance Anticancer Immunity by Promoting CD4 ⁺ and CD8 ⁺ T Cell Populations In Vivo. Small, 2017, 13, 1701816.	5.2	24
18	Biodegradable Metal Ion-Doped Mesoporous Silica Nanospheres Stimulate Anticancer Th1 Immune Response in Vivo. ACS Applied Materials & Interfaces, 2017, 9, 43538-43544.	4.0	71

Xia Li

#	Article	IF	CITATIONS
19	Hierarchically porous, and Cu- and Zn-containing Î ³ -AlOOH mesostrands as adjuvants for cancer immunotherapy. Scientific Reports, 2017, 7, 16749.	1.6	27
20	Boron nitride nanotubes as drug carriers. , 2016, , 79-94.		5
21	Boron nitride nanotubeâ€enhanced osteogenic differentiation of mesenchymal stem cells. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 323-329.	1.6	61
22	Comprehensive Mechanism Analysis of Mesoporousâ€Silicaâ€Nanoparticleâ€Induced Cancer Immunotherapy. Advanced Healthcare Materials, 2016, 5, 1169-1176.	3.9	70
23	Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo. Small, 2016, 12, 3510-3515.	5.2	78
24	Stimulation of In Vivo Antitumor Immunity with Hollow Mesoporous Silica Nanospheres. Angewandte Chemie - International Edition, 2016, 55, 1899-1903.	7.2	116
25	Rod-shaped and fluorine-substituted hydroxyapatite free of molecular immunopotentiators stimulates anti-cancer immunity in vivo. Chemical Communications, 2016, 52, 7078-7081.	2.2	35
26	Cancer Immunotherapy: Comprehensive Mechanism Analysis of Mesoporous‧ilicaâ€Nanoparticleâ€Induced Cancer Immunotherapy (Adv. Healthcare Mater. 10/2016). Advanced Healthcare Materials, 2016, 5, 1246-1246.	3.9	4
27	Silica Nanospheres: Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo (Small 26/2016). Small, 2016, 12, 3602-3602.	5.2	10
28	Rod-shaped and substituted hydroxyapatite nanoparticles stimulating type 1 and 2 cytokine secretion. Colloids and Surfaces B: Biointerfaces, 2016, 139, 10-16.	2.5	31
29	Stimulation of In Vivo Antitumor Immunity with Hollow Mesoporous Silica Nanospheres. Angewandte Chemie, 2016, 128, 1931-1935.	1.6	19
30	Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. ACS Applied Materials & Interfaces, 2015, 7, 17217-17225.	4.0	87
31	High-throughput fabrication of strutted graphene by ammonium-assisted chemical blowing for high-performance supercapacitors. Nano Energy, 2015, 16, 81-90.	8.2	83
32	<i>In vivo</i> biocompatibility of boron nitride nanotubes: Effects on stem cell biology and tissue regeneration in planarians. Nanomedicine, 2015, 10, 1911-1922.	1.7	85
33	Recent Progress on Fabrications and Applications of Boron Nitride Nanomaterials: A Review. Journal of Materials Science and Technology, 2015, 31, 589-598.	5.6	282
34	Pore sizeâ€dependent immunogenic activity of mesoporous silicaâ€based adjuvants in cancer immunotherapy. Journal of Biomedical Materials Research - Part A, 2014, 102, 967-974.	2.1	22
35	Biomass-Directed Synthesis of 20 g High-Quality Boron Nitride Nanosheets for Thermoconductive Polymeric Composites. ACS Nano, 2014, 8, 9081-9088.	7.3	145
36	Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano, 2014, 8, 6123-6130.	7.3	374

Xia Li

#	Article	IF	CITATIONS
37	Length Fractionation of Boron Nitride Nanotubes Using Creamed Oil-in-Water Emulsions. Langmuir, 2014, 30, 1735-1740.	1.6	5
38	Multimodal luminescent-magnetic boron nitride nanotubes@NaGdF ₄ :Eu structures for cancer therapy. Chemical Communications, 2014, 50, 4371-4374.	2.2	47
39	Cytocompatibility evaluation of gum Arabic-coated ultra-pure boron nitride nanotubes on human cells. Nanomedicine, 2014, 9, 773-788.	1.7	61
40	Boron nitride nanotubes functionalized with mesoporous silica for intracellular delivery of chemotherapy drugs. Chemical Communications, 2013, 49, 7337.	2.2	82
41	Simple synthesis route of mesoporous AlOOH nanofibers to enhance immune responses. RSC Advances, 2013, 3, 8164.	1.7	13
42	Zn- and Mg- Containing Tricalcium Phosphates-Based Adjuvants for Cancer Immunotherapy. Scientific Reports, 2013, 3, 2203.	1.6	23
43	Particle-size-dependent toxicity and immunogenic activity of mesoporous silica-based adjuvants for tumor immunotherapy. Acta Biomaterialia, 2013, 9, 7480-7489.	4.1	64
44	DNA-lipid-apatite composite layers enhance gene expression of mesenchymal stem cells. Materials Science and Engineering C, 2013, 33, 512-518.	3.8	8
45	Tissue-engineered endothelial cell layers on surface-modified Ti for inhibiting in vitro platelet adhesion. Science and Technology of Advanced Materials, 2013, 14, 035002.	2.8	4
46	Mesoporous Silica alcium Phosphateâ€Tuberculin Purified Protein Derivative Composites as an Effective Adjuvant for Cancer Immunotherapy. Advanced Healthcare Materials, 2013, 2, 863-871.	3.9	35
47	Signal molecules–calcium phosphate coprecipitation and its biomedical application as a functional coating. Biofabrication, 2011, 3, 022001.	3.7	35
48	BMP-2 and ALP gene expression induced by a BMP-2 gene–fibronectin–apatite composite layer. Biomedical Materials (Bristol), 2011, 6, 045004.	1.7	23
49	Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO2–P2O5 (M=Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomaterialia, 2011, 7, 3638-3644.	4.1	128
50	Silicate–apatite composite layers on external fixation rods and <i>in vitro</i> evaluation using fibroblast and osteoblast. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1181-1189.	2.1	17
51	Zinc-containing apatite layers on external fixation rods promoting cell activity. Acta Biomaterialia, 2010, 6, 962-968.	4.1	106
52	Mesoporous bioactive glass coatings on stainless steel for enhanced cell activity, cytoskeletal organization and AsMg immobilization. Journal of Materials Chemistry, 2010, 20, 6437.	6.7	47
53	MBG/PLGA composite microspheres with prolonged drug release. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 148-154.	1.6	30
54	Effect of coprecipitation temperature on the properties and activity of fibroblast growth factor-2 apatite composite layer. Materials Science and Engineering C, 2009, 29, 216-221.	3.8	27

Xia Li

#	Article	IF	CITATIONS
55	Formation of cytochrome C–apatite composite layer on NaOH- and heat-treated titanium. Materials Science and Engineering C, 2009, 29, 766-770.	3.8	5
56	The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo. Materials Science and Engineering C, 2009, 29, 969-975.	3.8	74
57	Solubility of Mg-containing β-tricalcium phosphate at 25°C. Acta Biomaterialia, 2009, 5, 508-517.	4.1	83
58	Ascorbate–apatite composite and ascorbate–FGF-2–apatite composite layers formed on external fixation rods and their effects on cell activity in vitro. Acta Biomaterialia, 2009, 5, 2647-2656.	4.1	27
59	Production of in-situ macropores in an injectable calcium phosphate cement by introduction of cetyltrimethyl ammonium bromide. Journal of Materials Science: Materials in Medicine, 2008, 19, 3221-3225.	1.7	13
60	A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior. Journal of Biomedical Materials Research - Part A, 2008, 84A, 84-91.	2.1	105
61	One-pot synthesis of magnetic and mesoporous bioactive glass composites and their sustained drug release property. Acta Materialia, 2008, 56, 3260-3265.	3.8	61
62	Effect of Zn and Mg in tricalcium phosphate and in culture medium on apoptosis and actin ring formation of mature osteoclasts. Biomedical Materials (Bristol), 2008, 3, 045002.	1.7	18
63	Synthesis of well-ordered mesoporous titania powder with crystallized framework. Materials Letters, 2008, 62, 1410-1413.	1.3	17
64	Synthesis and characterization of mesoporous CaO–MO–SiO2–P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. Journal of Materials Chemistry, 2008, 18, 4103.	6.7	74
65	Synthesis and Magnetic Properties of Mesostructured \hat{I}^3 -Fe2O3/Carbon Composites by a Co-casting Method. Chemistry of Materials, 2007, 19, 3484-3490.	3.2	104
66	Hierarchically Porous Bioactive Glass Scaffolds Synthesized with a PUF and P123 Cotemplated Approach. Chemistry of Materials, 2007, 19, 4322-4326.	3.2	122
67	A template route to the preparation of mesoporous amorphous calcium silicate with highin vitro bone-forming bioactivity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 431-439.	1.6	62
68	Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior. Microporous and Mesoporous Materials, 2007, 102, 151-158.	2.2	153
69	Novel Apatite-Pathogen-Associated Molecular Patterns Adjuvants for Cancer Immune Therapy. Key Engineering Materials, 0, 529-530, 471-474.	0.4	0
70	FGF-2-Zinc-Apatite Composite Layers on External Fixation Rod for Promoting Cell Activity. Key Engineering Materials, 0, 529-530, 480-485.	0.4	0
71	Facile and Mild Strategy Toward Biopolymer-Coated Boron Nitride Nanotubes via a Glycine-Assisted Interfacial Process. Journal of Physical Chemistry C, 0, , 130911093342002.	1.5	8