Paulsamy Muruganandam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949883/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fortran programs for the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2009, 180, 1888-1912.	7.5	332
2	C programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2012, 183, 2021-2025.	7.5	168
3	Bose-Einstein condensation dynamics from the numerical solution of the Gross-Pitaevskii equation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2831-2843.	1.5	118
4	Bose–Einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods. Journal of Physics B: Atomic, Molecular and Optical Physics, 2003, 36, 2501-2513.	1.5	111
5	Fortran and C programs for the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2015, 195, 117-128.	7.5	94
6	Interaction of dark–bright solitons in two-component Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2009, 42, 145307.	1.5	62
7	Hybrid OpenMP/MPI programs for solving the time-dependent Gross–Pitaevskii equation in a fully anisotropic trap. Computer Physics Communications, 2016, 200, 411-417.	7.5	61
8	Bright and dark solitons in a quasi-1D Bose–Einstein condensates modelled by 1D Gross–Pitaevskii equation with time-dependent parameters. Physica D: Nonlinear Phenomena, 2010, 239, 366-386.	2.8	52
9	OpenMP Fortran and C programs for solving the time-dependent Gross–Pitaevskii equation in an an an an an an an	7.5	52
10	CUDA programs for solving the time-dependent dipolar Gross–Pitaevskii equation in an anisotropic trap. Computer Physics Communications, 2016, 200, 406-410.	7.5	51
11	Manipulating matter rogue waves and breathers in Bose-Einstein condensates. Physical Review E, 2014, 90, 062905.	2.1	48
12	OpenMP, OpenMP/MPI, and CUDA/MPI C programs for solving the time-dependent dipolar Gross–Pitaevskii equation. Computer Physics Communications, 2016, 209, 190-196.	7.5	39
13	Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose–Einstein condensate with repulsive atomic interaction. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 101001.	1.5	37
14	Diffusion induced spiral wave chimeras in ecological system. European Physical Journal: Special Topics, 2018, 227, 983-993.	2.6	36
15	Numerical and variational solutions of the dipolar Gross-Pitaevskii equation in reduced dimensions. Laser Physics, 2012, 22, 813-820.	1.2	35
16	Stability of trapless Bose–Einstein condensates with two- and three-body interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 125302.	1.5	32
17	Matter wave switching in Bose–Einstein condensates via intensity redistribution soliton interactions. Journal of Mathematical Physics, 2011, 52, .	1.1	30
18	OpenMP GNU and Intel Fortran programs for solving the time-dependent Gross–Pitaevskii equation. Computer Physics Communications, 2017, 220, 503-506.	7.5	30

#	Article	IF	CITATIONS
19	Manipulating localized matter waves in multicomponent Bose-Einstein condensates. Physical Review E, 2016, 93, 032212.	2.1	29
20	Localization of a dipolar Bose–Einstein condensate in a bichromatic optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 205305.	1.5	25
21	Gap solitons in a dipolar Bose–Einstein condensate on a three-dimensional optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 121001.	1.5	24
22	Time series analysis for minority game simulations of financial markets. Physica A: Statistical Mechanics and Its Applications, 2003, 321, 619-632.	2.6	22
23	Vortex dynamics of rotating dipolar Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 215301.	1.5	22
24	Modulation instability in quasi-two-dimensional spin–orbit coupled Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 245301.	1.5	22
25	Miscibility in coupled dipolar and non-dipolar Bose–Einstein condensates. Journal of Physics Communications, 2017, 1, 035012.	1.2	22
26	C and Fortran OpenMP programs for rotating Bose–Einstein condensates. Computer Physics Communications, 2019, 240, 74-82.	7.5	22
27	Chaotic oscillation in an attractive Bose-Einstein condensate under an impulsive force. Physical Review A, 2002, 65, .	2.5	21
28	Dipolar Bose–Einstein condensate soliton on a two-dimensional optical lattice. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 2200-2205.	2.1	21
29	Mean-field model for the interference of matter–waves from a three-dimensional optical trap. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 310, 229-235.	2.1	20
30	Two-dimensional dipolar Bose–Einstein condensate bright and vortex solitons on a one-dimensional optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 045301.	1.5	20
31	Characteristic features of the Shannon information entropy of dipolar Bose-Einstein condensates. Journal of Chemical Physics, 2017, 147, 044304.	3.0	20
32	Spin-1 spin–orbit- and Rabi-coupled Bose–Einstein condensate solver. Computer Physics Communications, 2021, 259, 107657.	7.5	20
33	Transition to complete synchronization in phase-coupled oscillators with nearest neighbor coupling. Chaos, 2009, 19, 013103.	2.5	18
34	Anisotropic sound and shock waves in dipolar Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 480-483.	2.1	17
35	Bright soliton dynamics in spin orbit-Rabi coupled Bose-Einstein condensates. Communications in Nonlinear Science and Numerical Simulation, 2017, 50, 68-76.	3.3	17
36	Three-dimensional vortex structures in a rotating dipolar Bose–Einstein condensate. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 155301.	1.5	16

#	Article	IF	CITATIONS
37	Emergence and mitigation of extreme events in a parametrically driven system with velocity-dependent potential. European Physical Journal Plus, 2021, 136, 1.	2.6	13
38	Effect of Rashba spin-orbit and Rabi couplings on the excitation spectrum of binary Bose-Einstein condensates. Physical Review A, 2021, 104, .	2.5	13
39	SPATIOTEMPORAL DYNAMICS OF COUPLED ARRAY OF MURALI–LAKSHMANAN–CHUA CIRCUITS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 805-830.	1.7	12
40	Effect of an impulsive force on vortices in a rotating Bose–Einstein condensate. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 301, 333-339.	2.1	12
41	Local dimension and finite time prediction in spatiotemporal chaotic systems. Physical Review E, 2003, 67, 066204.	2.1	12
42	Analytical calculation of the transition to complete phase synchronization in coupled oscillators. Pramana - Journal of Physics, 2008, 70, 1143-1151.	1.8	12
43	Dynamical stabilization of two-dimensional trapless Bose–Einstein condensates by three-body interaction and quantum fluctuations. Chaos, Solitons and Fractals, 2017, 103, 232-237.	5.1	12
44	Quenching dynamics of the bright solitons and other localized states in spin–orbit coupled Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 195301.	1.5	11
45	Nonstationary excitations in Bose–Einstein condensates under the action of periodically varying scattering length with time dependent frequencies. Physica D: Nonlinear Phenomena, 2007, 227, 1-7.	2.8	9
46	Effect of optical lattice potentials on the vortices in rotating dipolar Bose-Einstein condensates. European Physical Journal D, 2014, 68, 1.	1.3	9
47	Low dimensional behavior in three-dimensional coupled map lattices. Chaos, Solitons and Fractals, 2009, 41, 997-1004.	5.1	8
48	Spotlighting phase separation in Rashba spin-orbit coupled Bose–Einstein condensates in two dimensions. Journal of Physics Communications, 2018, 2, 025008.	1.2	8
49	Asymmetry in initial cluster size favors symmetry in a network of oscillators. Chaos, 2018, 28, 081101.	2.5	8
50	Vortex formation and vortex lattices in a Bose-Einstein condensate with Lee-Huang-Yang (LHY) correction. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 107, 54-59.	2.7	8
51	OpenMP solver for rotating spin-1 spin–orbit- and Rabi-coupled Bose–Einstein condensates. Computer Physics Communications, 2021, 264, 107926.	7.5	8
52	Desynchronized wave patterns in synchronized chaotic regions of coupled map lattices. Physical Review E, 2005, 72, 037205.	2.1	7
53	Amplitude-mediated spiral chimera pattern in a nonlinear reaction-diffusion system. Physical Review E, 2021, 103, 062209.	2.1	7
54	Coreless vortex dipoles and trapped droplets in phase-separated binary condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 055303.	1.5	6

#	Article	IF	CITATIONS
55	Vortical and fundamental solitons in dipolar Bose–Einstein condensates trapped in isotropic and anisotropic nonlinear potentials. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 175302.	1.5	6
56	ldentifying financial crises in real time. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1386-1392.	2.6	6
57	Formation and stability of coreless vortex dipoles in phase-separated binary condensates. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 378-386.	2.1	6
58	Coherent motion of chaotic attractors. Physical Review E, 2017, 96, 042210.	2.1	6
59	Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators. Physical Review E, 2010, 81, 066219.	2.1	5
60	Influence of Rashba spin–orbit and Rabi couplings on the spin-mixing and ground state phases of binary Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 225301.	1.5	5
61	Bifurcation analysis of the travelling waveform of FitzHugh–Nagumo nerve conduction model equation. Chaos, 1997, 7, 476-487.	2.5	4
62	Local dimension and finite time prediction in coupled map lattices. Pramana - Journal of Physics, 2005, 64, 381-387.	1.8	4
63	Coexistence of synchronized and desynchronized patterns in coupled chaotic dynamical systems. Chaos, Solitons and Fractals, 2008, 36, 991-1018.	5.1	4
64	Position swapping and pinching in Bose-Fermi mixtures with two-color optical Feshbach resonances. Physical Review A, 2011, 83, .	2.5	4
65	Dipolar Bose-Einstein condensates with large scattering length. Physical Review A, 2012, 85, .	2.5	4
66	Numerical studies on vortices in rotating dipolar Bose-Einstein condensates. Journal of Physics: Conference Series, 2014, 497, 012036.	0.4	4
67	Spiral wave chimera-like transient dynamics in three-dimensional grid of diffusive ecological systems. Chaos, 2021, 31, 083125.	2.5	4
68	Comment on "Intermittent Synchronization in a Pair of Coupled Chaotic Pendula― Physical Review Letters, 1999, 83, 1259-1259.	7.8	3
69	Observation of phase-flip transition in delay-coupled Nishio-Inaba circuits. European Physical Journal: Special Topics, 2013, 222, 917-926.	2.6	3
70	Collisionally inhomogeneous Bose–Einstein condensates with binary and three-body interactions in a bichromatic optical lattice. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 155302.	1.5	3
71	Dynamics of trapped interacting vortices in Bose–Einstein condensates: a role of breathing degree of freedom. Journal of Physics A: Mathematical and Theoretical, 2016, 49, 315102.	2.1	2
72	FACt: FORTRAN toolbox for calculating fluctuations in atomic condensates. Computer Physics Communications, 2020, 256, 107288.	7.5	2

#	Article	IF	CITATIONS
73	Synchronization Dynamics of Modified Relay-coupled Chaotic Systems. Journal of Applied Nonlinear Dynamics, 2018, 7, 11-24.	0.3	2
74	Condensates in double-well potential with synthetic gauge potentials and vortex seeding. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 2376-2381.	2.1	1
75	On the ground state phases in spin-orbit coupled Bose-Einstein condensates with weak repulsive interactions. AIP Conference Proceedings, 2020, , .	0.4	1
76	Ground state phases in Rashba-Dresselhaus spin-orbit-coupled Bose-Einstein condensates. AlP Conference Proceedings, 2020, , .	0.4	1
77	Stability window of trapless polariton Bose-Einstein condensates. Physical Review B, 2022, 105, .	3.2	1
78	Nonlinear time evolution of coherent states with observation of super revivals in a generalized isotonic oscillator. International Journal of Geometric Methods in Modern Physics, 2014, 11, 1450027.	2.0	0
79	Phase-flip transition in coupled time-delayed piecewise linear electronic circuits. , 2014, , .		0
80	Rotational properties of dipolar Bose-Einstein condensates in double-well potential. AIP Conference Proceedings, 2020, , .	0.4	0
81	Matter wave solitons and other localized excitations in Bose–Einstein condensates in atom optics. , 2017, , 253-278.		0