List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949851/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Impact of Aging on the Ovarian Extracellular Matrix and Derived 3D Scaffolds. Nanomaterials, 2022, 12, 345.                                                                                    | 1.9 | 15        |
| 2  | Telocytes: Active Players in the Rainbow Trout (Oncorhynchus mykiss) Intestinal Stem-Cell Niche.<br>Animals, 2022, 12, 74.                                                                     | 1.0 | 3         |
| 3  | Current Advances in 3D Tissue and Organ Reconstruction. International Journal of Molecular<br>Sciences, 2021, 22, 830.                                                                         | 1.8 | 30        |
| 4  | Preparation of Biological Scaffolds and Primary Intestinal Epithelial Cells to Efficiently 3D Model the Fish Intestinal Mucosa. Methods in Molecular Biology, 2021, 2273, 263-278.             | 0.4 | 2         |
| 5  | Creation of a Bioengineered Ovary: Isolation of Female Germline Stem Cells for the Repopulation of a<br>Decellularized Ovarian Bioscaffold. Methods in Molecular Biology, 2021, 2273, 139-149. | 0.4 | 16        |
| 6  | A Two-Step Protocol to Erase Human Skin Fibroblasts and Convert Them into Trophoblast-like Cells.<br>Methods in Molecular Biology, 2021, 2273, 151-158.                                        | 0.4 | 4         |
| 7  | Use of Virus-Mimicking Nanoparticles to Investigate Early Infection Events in Upper Airway 3D Models.<br>Methods in Molecular Biology, 2021, 2273, 131-138.                                    | 0.4 | 2         |
| 8  | "Biomechanical Signaling in Oocytes and Parthenogenetic Cells― Frontiers in Cell and Developmental<br>Biology, 2021, 9, 646945.                                                                | 1.8 | 8         |
| 9  | New Stable Cell Lines Derived from the Proximal and Distal Intestine of Rainbow Trout<br>(Oncorhynchus mykiss) Retain Several Properties Observed In Vivo. Cells, 2021, 10, 1555.              | 1.8 | 15        |
| 10 | Generation of Trophoblast-Like Cells From Hypomethylated Porcine Adult Dermal Fibroblasts.<br>Frontiers in Veterinary Science, 2021, 8, 706106.                                                | 0.9 | 3         |
| 11 | Ovarian Decellularized Bioscaffolds Provide an Optimal Microenvironment for Cell Growth and Differentiation In Vitro. Cells, 2021, 10, 2126.                                                   | 1.8 | 15        |
| 12 | Farewell. Theriogenology, 2021, 176, A1.                                                                                                                                                       | 0.9 | 0         |
| 13 | Tracheal In Vitro Reconstruction Using a Decellularized Bio-Scaffold in Combination with a Rotating<br>Bioreactor. Methods in Molecular Biology, 2021, , 157-165.                              | 0.4 | 2         |
| 14 | The Role of Resveratrol in Mammalian Reproduction. Molecules, 2020, 25, 4554.                                                                                                                  | 1.7 | 54        |
| 15 | The 3D Pattern of the Rainbow Trout (Oncorhynchus mykiss) Enterocytes and Intestinal Stem Cells.<br>International Journal of Molecular Sciences, 2020, 21, 9192.                               | 1.8 | 8         |
| 16 | Whole-ovary decellularization generates an effective 3D bioscaffold for ovarian bioengineering.<br>Journal of Assisted Reproduction and Genetics, 2020, 37, 1329-1339.                         | 1.2 | 25        |
| 17 | Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence. Theriogenology, 2020, 145, 77-85.                                               | 0.9 | 17        |
| 18 | A 3D approach to reproduction. Theriogenology, 2020, 150, 2-7.                                                                                                                                 | 0.9 | 8         |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Detailed Study of Rainbow Trout (Onchorhynchus mykiss) Intestine Revealed That Digestive and<br>Absorptive Functions Are Not Linearly Distributed along Its Length. Animals, 2020, 10, 745.                  | 1.0 | 34        |
| 20 | All roads lead to Rome: the many ways to pluripotency. Journal of Assisted Reproduction and Genetics, 2020, 37, 1029-1036.                                                                                     | 1.2 | 7         |
| 21 | A Two-Step Strategy that Combines Epigenetic Modification and Biomechanical Cues to Generate<br>Mammalian Pluripotent Cells. Journal of Visualized Experiments, 2020, , .                                      | 0.2 | 5         |
| 22 | Rho Signaling-Directed YAP/TAZ Regulation Encourages 3D Spheroid Colony Formation and Boosts<br>Plasticity of Parthenogenetic Stem Cells. Advances in Experimental Medicine and Biology, 2019, 1237,<br>49-60. | 0.8 | 3         |
| 23 | Evolution of pig intestinal stem cells from birth to weaning. Animal, 2019, 13, 2830-2839.                                                                                                                     | 1.3 | 39        |
| 24 | Use of a PTFE Micro-Bioreactor to Promote 3D Cell Rearrangement and Maintain High Plasticity in Epigenetically Erased Fibroblasts. Stem Cell Reviews and Reports, 2019, 15, 82-92.                             | 5.6 | 17        |
| 25 | Bioengineering the ovary to preserve and reestablish female fertility. Animal Reproduction, 2019, 16, 45-51.                                                                                                   | 0.4 | 7         |
| 26 | New tools for cell reprogramming and conversion: Possible applications to livestock. Animal Reproduction, 2019, 16, 475-484.                                                                                   | 0.4 | 3         |
| 27 | Adding a dimension to cell fate. Animal Reproduction, 2019, 16, 18-23.                                                                                                                                         | 0.4 | 1         |
| 28 | Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A<br>Preclinical Study. Advances in Experimental Medicine and Biology, 2018, 1079, 151-162.                    | 0.8 | 5         |
| 29 | Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells<br>are Boosted by the Use of Low-Stiffness Substrate. Stem Cell Reviews and Reports, 2018, 14, 398-411.   | 5.6 | 32        |
| 30 | Methylation mechanisms and biomechanical effectors controlling cell fate. Reproduction, Fertility and Development, 2018, 30, 64.                                                                               | 0.1 | 6         |
| 31 | Stem Cells and Cell Conversion in Livestock. , 2018, , 215-233.                                                                                                                                                |     | 0         |
| 32 | Profiling bovine blastocyst microRNAs using deep sequencing. Reproduction, Fertility and Development, 2017, 29, 1545.                                                                                          | 0.1 | 9         |
| 33 | Simple and Quick Method to Obtain a Decellularized, Functional Liver Bioscaffold. Methods in Molecular Biology, 2017, 1577, 283-292.                                                                           | 0.4 | 7         |
| 34 | Use of a Super-hydrophobic Microbioreactor to Generate and Boost Pancreatic Mini-organoids.<br>Methods in Molecular Biology, 2017, 1576, 291-299.                                                              | 0.4 | 8         |
| 35 | In search of the transcriptional blueprints of a competent oocyte. Animal Reproduction, 2017, 14, 34-47.                                                                                                       | 0.4 | 1         |
| 36 | Mountain high and valley deep: epigenetic controls of pluripotency and cell fate. Animal<br>Reproduction, 2017, 14, 61-68.                                                                                     | 0.4 | 1         |

| #  | Article                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Extended ex vivo culture of fresh and cryopreserved whole sheep ovaries. Reproduction, Fertility and Development, 2016, 28, 1893.                                                         | 0.1 | 6         |
| 38 | Foreword. Theriogenology, 2016, 85, 1.                                                                                                                                                    | 0.9 | 0         |
| 39 | Epigenetic conversion of adult dog skin fibroblasts into insulin-secreting cells. Veterinary Journal, 2016, 211, 52-56.                                                                   | 0.6 | 20        |
| 40 | 5-azacytidine affects TET2 and histone transcription and reshapes morphology of human skin fibroblasts. Scientific Reports, 2016, 6, 37017.                                               | 1.6 | 29        |
| 41 | Epigenetic Conversion as a Safe and Simple Method to Obtain Insulin-secreting Cells from Adult Skin<br>Fibroblasts. Journal of Visualized Experiments, 2016, , .                          | 0.2 | 7         |
| 42 | The quest for an effective and safe personalized cell therapy using epigenetic tools. Clinical Epigenetics, 2016, 8, 119.                                                                 | 1.8 | 11        |
| 43 | Erase and Rewind: Epigenetic Conversion of Cell Fate. Stem Cell Reviews and Reports, 2016, 12, 163-170.                                                                                   | 5.6 | 5         |
| 44 | Intercellular bridges are essential for human parthenogenetic cell survival. Mechanisms of<br>Development, 2015, 136, 30-39.                                                              | 1.7 | 4         |
| 45 | Expression and intracytoplasmic distribution of staufen and calreticulin in maturing human oocytes.<br>Journal of Assisted Reproduction and Genetics, 2015, 32, 645-652.                  | 1.2 | 11        |
| 46 | Phenotype switching through epigenetic conversion. Reproduction, Fertility and Development, 2015, 27, 776.                                                                                | 0.1 | 10        |
| 47 | Our first 40 years. Theriogenology, 2014, 81, 1-2.                                                                                                                                        | 0.9 | 6         |
| 48 | Reprogramming of Pig Dermal Fibroblast into Insulin Secreting Cells by a Brief Exposure to 5-aza-cytidine. Stem Cell Reviews and Reports, 2014, 10, 31-43.                                | 5.6 | 39        |
| 49 | Beneficial effect of directional freezing on in vitro viability of cryopreserved sheep whole ovaries and ovarian cortical slices. Human Reproduction, 2014, 29, 114-124.                  | 0.4 | 34        |
| 50 | lmmune Intervention for Type 1 Diabetes, 2012–2013. Diabetes Technology and Therapeutics, 2014, 16,<br>S-85-S-91.                                                                         | 2.4 | 1         |
| 51 | Morphological and Molecular Changes of Human Granulosa Cells Exposed to 5-Azacytidine and<br>Addressed Toward Muscular Differentiation. Stem Cell Reviews and Reports, 2014, 10, 633-642. | 5.6 | 41        |
| 52 | Freezing and Freeze-Drying: The Future Perspective of Organ and Cell Preservation. Pancreatic Islet<br>Biology, 2014, , 167-184.                                                          | 0.1 | 5         |
| 53 | Direct comparative analysis of conventional and directional freezing for the cryopreservation of whole ovaries. Fertility and Sterility, 2013, 100, 1122-1131.                            | 0.5 | 19        |
| 54 | Pluripotency in Domestic Animal Embryos. SpringerBriefs in Stem Cells, 2013, , 21-27.                                                                                                     | 0.1 | 0         |

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Brief demethylation step allows the conversion of adult human skin fibroblasts into<br>insulin-secreting cells. Proceedings of the National Academy of Sciences of the United States of<br>America, 2013, 110, 8948-8953. | 3.3 | 119       |
| 56 | Early Embryo Development in Large Animals. SpringerBriefs in Stem Cells, 2013, , 1-19.                                                                                                                                    | 0.1 | 0         |
| 57 | Characterization of the Constitutive Pig Ovary Heat Shock Chaperone Machinery and Its Response to Acute Thermal Stress or to Seasonal Variations1. Biology of Reproduction, 2012, 87, 119.                                | 1.2 | 42        |
| 58 | Chronic mastitis is associated with altered ovarian follicle development in dairy cattle. Journal of<br>Dairy Science, 2012, 95, 1885-1893.                                                                               | 1.4 | 31        |
| 59 | Why is it so Difficult to Derive Pluripotent Stem Cells in Domestic Ungulates?. Reproduction in Domestic Animals, 2012, 47, 11-17.                                                                                        | 0.6 | 35        |
| 60 | Foreword. Theriogenology, 2012, 78, 1732.                                                                                                                                                                                 | 0.9 | 0         |
| 61 | Parthenogenesis in non-rodent species: developmental competence and differentiation plasticity.<br>Theriogenology, 2012, 77, 766-772.                                                                                     | 0.9 | 18        |
| 62 | Isolation, Characterization and Differentiation Potential of Cardiac Progenitor Cells in Adult Pigs.<br>Stem Cell Reviews and Reports, 2012, 8, 706-719.                                                                  | 5.6 | 4         |
| 63 | Centrosome Amplification and Chromosomal Instability in Human and Animal Parthenogenetic Cell<br>Lines. Stem Cell Reviews and Reports, 2012, 8, 1076-1087.                                                                | 5.6 | 25        |
| 64 | Stem Cells in the Reproductive System. American Journal of Reproductive Immunology, 2012, 67, 445-462.                                                                                                                    | 1.2 | 5         |
| 65 | Pluripotency Network in Porcine Embryos and Derived Cell Lines. Reproduction in Domestic Animals, 2012, 47, 86-91.                                                                                                        | 0.6 | 27        |
| 66 | Large animal models for cardiac stem cell therapies. Theriogenology, 2011, 75, 1416-1425.                                                                                                                                 | 0.9 | 48        |
| 67 | Parthenogenetic Cell Lines: An Unstable Equilibrium Between Pluripotency and Malignant<br>Transformation. Current Pharmaceutical Biotechnology, 2011, 12, 206-212.                                                        | 0.9 | 7         |
| 68 | Parthenogenesis in mammals: pros and cons in pluripotent cell derivation. Open Life Sciences, 2011, 6,<br>770-775.                                                                                                        | 0.6 | 1         |
| 69 | Culture Conditions and Signalling Networks Promoting the Establishment of Cell Lines from<br>Parthenogenetic and Biparental Pig Embryos. Stem Cell Reviews and Reports, 2010, 6, 484-495.                                 | 5.6 | 59        |
| 70 | Procedure for rapid oocyte selection based on quantitative analysis of cumulus cell gene expression.<br>Journal of Assisted Reproduction and Genetics, 2010, 27, 429-434.                                                 | 1.2 | 5         |
| 71 | RFD Award Lecture 2009.In vitro maturation of farm animal oocytes: a useful tool for investigating<br>the mechanisms leading to full-term development. Reproduction, Fertility and Development, 2010, 22,<br>495.         | 0.1 | 18        |
| 72 | Development, embryonic genome activity and mitochondrial characteristics of bovine–pig inter-family nuclear transfer embryos. Reproduction, 2010, 140, 273-285.                                                           | 1.1 | 29        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Newborn pig ovarian tissue xenografted into Severe Combined Immunodeficient (SCID) mice acquires<br>limited responsiveness to gonadotropins. Theriogenology, 2010, 74, 557-562.                                                    | 0.9 | 1         |
| 74 | No shortcuts to pig embryonic stem cells. Theriogenology, 2010, 74, 544-550.                                                                                                                                                       | 0.9 | 39        |
| 75 | Foreword. Theriogenology, 2010, 74, 491.                                                                                                                                                                                           | 0.9 | Ο         |
| 76 | Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution<br>and Altered Expression Levels of Mitotic Spindle Check-point Transcripts. Stem Cell Reviews and<br>Reports, 2009, 5, 340-352. | 5.6 | 40        |
| 77 | On-line publication of supplementary material. Theriogenology, 2009, 72, 1.                                                                                                                                                        | 0.9 | 2         |
| 78 | Parthenotes as a source of embryonic stem cells. Cell Proliferation, 2008, 41, 20-30.                                                                                                                                              | 2.4 | 50        |
| 79 | Parthenogenesis as an Approach to Pluripotency: Advantages and Limitations Involved. Stem Cell<br>Reviews and Reports, 2008, 4, 127-135.                                                                                           | 5.6 | 21        |
| 80 | Recent Progress in Embryonic Stem Cell Research and Its Application in Domestic Species.<br>Reproduction in Domestic Animals, 2008, 43, 193-199.                                                                                   | 0.6 | 42        |
| 81 | Parthenogenetic Activation: Biology and Applications in the ART Laboratory. Placenta, 2008, 29, 121-125.                                                                                                                           | 0.7 | 58        |
| 82 | Developmental Potential of Human Oocytes After Slow Freezing or Vitrification: A Randomized In<br>Vitro Study Based on Parthenogenesis. Reproductive Sciences, 2008, 15, 1027-1033.                                                | 1.1 | 8         |
| 83 | Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells. Reproduction, 2008, 136, 303-312.                                                                           | 1.1 | 63        |
| 84 | Aroclor-1254 affects mRNA polyadenylation, translational activation, cell morphology, and DNA integrity of rat primary prostate cells. Endocrine-Related Cancer, 2007, 14, 257-266.                                                | 1.6 | 15        |
| 85 | Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction, 2007, 134, 645-650.                                                                                           | 1.1 | 164       |
| 86 | Temporal and spatial control of gene expression in early embryos of farm animals. Reproduction,<br>Fertility and Development, 2007, 19, 35.                                                                                        | 0.1 | 40        |
| 87 | Derivation and characterization of pluripotent cell lines from pig embryos of different origins.<br>Theriogenology, 2007, 67, 54-63.                                                                                               | 0.9 | 59        |
| 88 | Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology, 2007, 68, S206-S213.                                                                                                                                    | 0.9 | 96        |
| 89 | Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Animal Reproduction Science, 2007, 98, 23-38.                                                                                              | 0.5 | 67        |
| 90 | In vitro development of human oocytes after parthenogenetic activation or intracytoplasmic sperm injection. Fertility and Sterility, 2007, 87, 77-82.                                                                              | 0.5 | 66        |

| #   | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | 278 GENE EXPRESSION PROFILE OF OVINE OOCYTES AND CUMULUS CELLS WITH REFERENCE TO PREMATING NUTRITION. Reproduction, Fertility and Development, 2007, 19, 254.                                                                                                       | 0.1 | 1         |
| 92  | Efficiency of equilibrium cooling and vitrification procedures for the cryopreservation of ovarian tissue: comparative analysis between human and animal models. Fertility and Sterility, 2006, 85, 1150-1156.                                                      | 0.5 | 177       |
| 93  | Editor's announcement. Theriogenology, 2006, 66, 1.                                                                                                                                                                                                                 | 0.9 | 1         |
| 94  | Cellular and molecular mechanisms mediating the effect of polychlorinated biphenyls on oocyte in vitro maturation. Reproductive Toxicology, 2006, 22, 242-249.                                                                                                      | 1.3 | 40        |
| 95  | Effects of Endocrine Disrupters on the Oocytes and Embryos of Farm Animals. Reproduction in Domestic Animals, 2005, 40, 291-299.                                                                                                                                    | 0.6 | 43        |
| 96  | Role of Adenosine Triphosphate, Active Mitochondria, and Microtubules in the Acquisition of<br>Developmental Competence of Parthenogenetically Activated Pig Oocytes1. Biology of Reproduction,<br>2005, 72, 1218-1223.                                             | 1.2 | 149       |
| 97  | Los mecanismos celulares y moleculares que regulan la calidad del ovocito y su influencia en el<br>rendimiento reproductivo del ganado. OIE Revue Scientifique Et Technique, 2005, 24, 413-423.                                                                     | 0.5 | 43        |
| 98  | Role of Intracellular Cyclic Adenosine 3′,5′-Monophosphate Concentration and Oocyte-Cumulus Cells<br>Communications on the Acquisition of the Developmental Competence During In Vitro Maturation of<br>Bovine Oocyte1. Biology of Reproduction, 2004, 70, 465-472. | 1.2 | 132       |
| 99  | Expression pattern of the maternal factor zygote arrest 1 (Zar1) in bovine tissues, oocytes, and embryos. Molecular Reproduction and Development, 2004, 69, 375-380.                                                                                                | 1.0 | 35        |
| 100 | Cumulus-Oocyte Communications in the Horse: Role of the Breeding Season and of the Maturation Medium. Reproduction in Domestic Animals, 2004, 39, 70-75.                                                                                                            | 0.6 | 20        |
| 101 | Changes in ovarian, follicular, and oocyte morphology immediately after the onset of puberty are not<br>accompanied by an increase in oocyte developmental competence in the pig. Theriogenology, 2004, 62,<br>1003-1011.                                           | 0.9 | 33        |
| 102 | The impact of endocrine disruptors on oocyte competence. Reproduction, 2003, 125, 313-325.                                                                                                                                                                          | 1.1 | 94        |
| 103 | Toxic Effects of In Vitro Exposure to p-tert-Octylphenol on Bovine Oocyte Maturation and Developmental Competence1. Biology of Reproduction, 2003, 69, 462-468.                                                                                                     | 1.2 | 30        |
| 104 | Quantification of Housekeeping Transcript Levels During the Development of Bovine Preimplantation<br>Embryos1. Biology of Reproduction, 2002, 67, 1465-1472.                                                                                                        | 1.2 | 182       |
| 105 | In vitro production of cattle-water buffalo (Bos taurus - Bubalus bubalis) hybrid embryos. Zygote,<br>2002, 10, 155-162.                                                                                                                                            | 0.5 | 19        |
| 106 | Bovine Somatotropin Administration to Dairy Goats in Late Lactation: Effects on Mammary Gland Function, Composition and Morphology. Journal of Dairy Science, 2002, 85, 1093-1102.                                                                                  | 1.4 | 32        |
| 107 | Microdensitometric assay of enzymatic activities in parthenogenetically activated and in vitro fertilized bovine oocytes. Acta Histochemica, 2002, 104, 193-198.                                                                                                    | 0.9 | 3         |
| 108 | Impact of endocrine disrupters on ovarian function and embryonic development. Domestic Animal Endocrinology, 2002, 23, 189-201.                                                                                                                                     | 0.8 | 22        |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Evolution of mRNA polyadenylation between oocyte maturation and first embryonic cleavage in cattle<br>and its relation with developmental competence. Molecular Reproduction and Development, 2002, 63,<br>510-517.                            | 1.0 | 86        |
| 110 | The maternal legacy to the embryo: cytoplasmic components and their effects on early development.<br>Theriogenology, 2001, 55, 1255-1276.                                                                                                      | 0.9 | 182       |
| 111 | The influence of cAMP before or during bovine oocyte maturation on embryonic developmental competence. Theriogenology, 2001, 55, 1733-1743.                                                                                                    | 0.9 | 50        |
| 112 | Glucose transporter expression is developmentally regulated in in vitro derived bovine preimplantation embryos. Molecular Reproduction and Development, 2001, 60, 370-376.                                                                     | 1.0 | 93        |
| 113 | Cellular and molecular mechanisms mediating the effects of polychlorinated biphenyls on oocyte<br>developmental competence in cattle. Molecular Reproduction and Development, 2001, 60, 535-541.                                               | 1.0 | 39        |
| 114 | In vitro reproductive toxicity of polychlorinated biphenyls: Effects on oocyte maturation and developmental competence in cattle. Molecular Reproduction and Development, 2001, 58, 411-416.                                                   | 1.0 | 52        |
| 115 | Effect of Cell-to-Cell Contact on In Vitro Deoxyribonucleic Acid Synthesis and Apoptosis Responses of<br>Bovine Granulosa Cells to Insulin-Like Growth Factor-I and Epidermal Growth Factor1. Biology of<br>Reproduction, 2000, 63, 1580-1585. | 1.2 | 28        |
| 116 | Sperm-mediated transgenesis. Theriogenology, 2000, 53, 127-137.                                                                                                                                                                                | 0.9 | 47        |
| 117 | Molecular Cloning, Genetic Mapping, and Developmental Expression of Bovine POU5F11. Biology of Reproduction, 1999, 60, 1093-1103.                                                                                                              | 1.2 | 169       |
| 118 | Changes in poly(A) tail length of maternal transcripts during in vitro maturation of bovine oocytes<br>and their relation with developmental competence. Molecular Reproduction and Development, 1999,<br>52, 427-433.                         | 1.0 | 105       |
| 119 | Effect of different levels of intracellular cAMP on the in vitro maturation of cattle oocytes and their subsequent development following in vitro fertilization. Molecular Reproduction and Development, 1999, 54, 86-91.                      | 1.0 | 103       |
| 120 | Spermatozoa, DNA binding and transgenic animals. , 1998, 7, 147-155.                                                                                                                                                                           |     | 22        |
| 121 | Comparative analysis of calf and cow oocytes during in vitro maturation. Molecular Reproduction and Development, 1998, 49, 168-175.                                                                                                            | 1.0 | 100       |
| 122 | Correlations between chemical parameters, mitogenic activity and embryotrophic activity of bovine oviduct-conditioned medium. Theriogenology, 1997, 48, 659-673.                                                                               | 0.9 | 6         |
| 123 | The in vitro developmental competence of bovine oocytes can be related to the morphology of the ovary. Theriogenology, 1997, 48, 1153-1160.                                                                                                    | 0.9 | 48        |
| 124 | Failure to produce transgenic offspring by intra-tubal insemination of gilts with DNA-treated sperm.<br>Reproduction, Fertility and Development, 1996, 8, 1055.                                                                                | 0.1 | 24        |
| 125 | Functions of proteins secreted by oviduct epithelial cells. Microscopy Research and Technique, 1995, 32, 1-12.                                                                                                                                 | 1.2 | 55        |
| 126 | Activin ?A subunit is expressed in bovine oviduct. Molecular Reproduction and Development, 1995, 40, 286-291.                                                                                                                                  | 1.0 | 30        |

0

| #   | Article                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | In Vitro development of preimplantation embryos from domestic species. Toxicology in Vitro, 1995, 9, 607-613.                                 | 1.1 | 3         |
| 128 | Autocrine, paracrine and environmental factors influencing embryonic development from zygote to blastocyst. Theriogenology, 1994, 41, 95-100. | 0.9 | 49        |
| 129 | ROLE OF THE OVIDUCT DURING EARLY EMBRYOGENESIS. Reproduction in Domestic Animals, 1993, 28, 189-192.                                          | 0.6 | 10        |
| 130 | Recent advances in sperm cell mediated gene transfer. Molecular Reproduction and Development, 1993, 36, 255-257.                              | 1.0 | 38        |
| 131 | Similarity of an oviduct-specific glycoprotein between different species. Reproduction, Fertility and Development, 1993, 5, 433.              | 0.1 | 20        |
| 132 | Early embryonic signals: embryo-maternal interactions before implantation. Animal Reproduction Science, 1992, 28, 269-276.                    | 0.5 | 23        |
| 133 | In vitro culture of sheep oocytes matured and fertilized in vitro. Theriogenology, 1988, 29, 883-891.                                         | 0.9 | 36        |
| 134 | Endogenous opioid peptides in uterine fluid. Fertility and Sterility, 1986, 46, 247-251.                                                      | 0.5 | 63        |
| 135 | Superovulation of dairy and beef cows using porcine FSH with defined LH content. Theriogenology, 1983, 20, 675-682.                           | 0.9 | 4         |
|     |                                                                                                                                               |     |           |

136 Parthenogenesis and parthenogenetic stem cells. , 0, , 250-260.