Xiao-Hong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949222/publications.pdf

Version: 2024-02-01

497 papers

24,683 citations

80 h-index 128 g-index

506 all docs

506 docs citations

506 times ranked

24272 citing authors

#	Article	IF	CITATIONS
1	MoS ₂ /Si Heterojunction with Vertically Standing Layered Structure for Ultrafast, Highâ€Detectivity, Selfâ€Driven Visible–Near Infrared Photodetectors. Advanced Functional Materials, 2015, 25, 2910-2919.	7.8	554
2	Fluorescence Turn On of Coumarin Derivatives by Metal Cations:Â A New Signaling Mechanism Based on C=N Isomerization. Organic Letters, 2007, 9, 33-36.	2.4	536
3	Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery. Theranostics, 2017, 7, 3667-3689.	4.6	349
4	Aligned Singleâ€Crystalline Perovskite Microwire Arrays for Highâ€Performance Flexible Image Sensors with Longâ€Term Stability. Advanced Materials, 2016, 28, 2201-2208.	11.1	346
5	High-Yield Seedless Synthesis of Triangular Gold Nanoplates through Oxidative Etching. Nano Letters, 2014, 14, 7201-7206.	4.5	334
6	High-Responsivity, High-Detectivity, Ultrafast Topological Insulator Bi ₂ Se ₃ /Silicon Heterostructure Broadband Photodetectors. ACS Nano, 2016, 10, 5113-5122.	7.3	300
7	Prediction and Design of Efficient Exciplex Emitters for Highâ€Efficiency, Thermally Activated Delayedâ€Fluorescence Organic Lightâ€Emitting Diodes. Advanced Materials, 2015, 27, 2378-2383.	11.1	299
8	Highly Efficient Non-Doped Blue Organic Light-Emitting Diodes Based on Fluorene Derivatives with High Thermal Stability. Advanced Functional Materials, 2005, 15, 1716-1721.	7.8	276
9	Remanagement of Singlet and Triplet Excitons in Singleâ€Emissiveâ€Layer Hybrid White Organic Lightâ€Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex. Advanced Materials, 2015, 27, 7079-7085.	11.1	255
10	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie - International Edition, 2019, 58, 14660-14665.	7.2	247
11	Ultrahigh-Responsivity Photodetectors from Perovskite Nanowire Arrays for Sequentially Tunable Spectral Measurement. Nano Letters, 2017, 17, 2482-2489.	4.5	242
12	Management of Singlet and Triplet Excitons in a Single Emission Layer: A Simple Approach for a Highâ€Efficiency Fluorescence/Phosphorescence Hybrid White Organic Lightâ€Emitting Device. Advanced Materials, 2012, 24, 3410-3414.	11.1	232
13	Organometal Halide Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Functional Materials, 2016, 26, 4797-4802.	7.8	231
14	Nearly 100% Triplet Harvesting in Conventional Fluorescent Dopantâ€Based Organic Lightâ€Emitting Devices Through Energy Transfer from Exciplex. Advanced Materials, 2015, 27, 2025-2030.	11.1	225
15	Bipolar Phenanthroimidazole Derivatives Containing Bulky Polyaromatic Hydrocarbons for Nondoped Blue Electroluminescence Devices with High Efficiency and Low Efficiency Roll-Off. Chemistry of Materials, 2013, 25, 4957-4965.	3.2	214
16	Ultrafast, Broadband Photodetector Based on MoSe ₂ /Silicon Heterojunction with Vertically Standing Layered Structure Using Graphene as Transparent Electrode. Advanced Science, 2016, 3, 1600018.	5.6	210
17	Excellent Photocatalysis of HF-Treated Silicon Nanowires. Journal of the American Chemical Society, 2009, 131, 17738-17739.	6.6	209
18	Novel Efficient Blue Fluorophors with Small Singletâ€Triplet Splitting: Hosts for Highly Efficient Fluorescence and Phosphorescence Hybrid WOLEDs with Simplified Structure. Advanced Materials, 2013, 25, 2205-2211.	11.1	206

#	Article	IF	Citations
19	Avoiding Energy Loss on TADF Emitters: Controlling the Dual Conformations of D–A Structure Molecules Based on the Pseudoplanar Segments. Advanced Materials, 2017, 29, 1701476.	11.1	199
20	Greenhouse-inspired supra-photothermal CO2 catalysis. Nature Energy, 2021, 6, 807-814.	19.8	198
21	All-inorganic cesium lead halide perovskite nanocrystals: synthesis, surface engineering and applications. Journal of Materials Chemistry C, 2019, 7, 757-789.	2.7	193
22	Biodegradable π-Conjugated Oligomer Nanoparticles with High Photothermal Conversion Efficiency for Cancer Theranostics. ACS Nano, 2019, 13, 12901-12911.	7.3	191
23	Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of Sterically Hindered Spacers in Phosphorescence Molecules. Advanced Materials, 2001, 13, 1245.	11.1	188
24	ZnO Nanotube Arrays as Biosensors for Glucose. Journal of Physical Chemistry C, 2009, 113, 20169-20172.	1.5	187
25	Red Organic Lightâ€Emitting Diode with External Quantum Efficiency beyond 20% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Science, 2018, 5, 1800436.	5.6	186
26	Single-Crystal Nanoribbons, Nanotubes, and Nanowires from Intramolecular Charge-Transfer Organic Molecules. Journal of the American Chemical Society, 2007, 129, 3527-3532.	6.6	185
27	Novel Strategy to Develop Exciplex Emitters for Highâ€Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials. Advanced Functional Materials, 2016, 26, 2002-2008.	7.8	181
28	Carbazole/Sulfone Hybrid D-Ï€-A-Structured Bipolar Fluorophores for High-Efficiency Blue-Violet Electroluminescence. Chemistry of Materials, 2013, 25, 2630-2637.	3.2	180
29	L-Type Ligand-Assisted Acid-Free Synthesis of CsPbBr ₃ Nanocrystals with Near-Unity Photoluminescence Quantum Yield and High Stability. Nano Letters, 2019, 19, 4151-4157.	4.5	177
30	Controlled synthesis of oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Applied Physics Letters, 2008, 92, .	1.5	175
31	Solutionâ€Processed 3D RGO–MoS ₂ /Pyramid Si Heterojunction for Ultrahigh Detectivity and Ultraâ€Broadband Photodetection. Advanced Materials, 2018, 30, e1801729.	11.1	175
32	Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs. Journal of Materials Chemistry, 2012, 22, 4502.	6.7	172
33	Thermally Activated Delayed Fluorescence Carbonyl Derivatives for Organic Light-Emitting Diodes with Extremely Narrow Full Width at Half-Maximum. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13472-13480.	4.0	165
34	Highly Efficient Photoelectrochemical Water Splitting from Hierarchical WO ₃ /BiVO ₄ Nanoporous Sphere Arrays. Nano Letters, 2017, 17, 8012-8017.	4.5	164
35	Niobium and Titanium Carbides (MXenes) as Superior Photothermal Supports for CO ₂ Photocatalysis. ACS Nano, 2021, 15, 5696-5705.	7.3	164
36	Ambient Electrosynthesis of Ammonia: Electrode Porosity and Composition Engineering. Angewandte Chemie - International Edition, 2018, 57, 12360-12364.	7.2	160

3

#	Article	IF	CITATIONS
37	InÂvivo tumor-targeted dual-modal fluorescence/CT imaging using a nanoprobe co-loaded with an aggregation-induced emission dye and gold nanoparticles. Biomaterials, 2015, 42, 103-111.	5.7	157
38	New Fluorescent Chemosensor Based on Exciplex Signaling Mechanism. Organic Letters, 2005, 7, 2133-2136.	2.4	155
39	Direct Evidence of Molecular Aggregation and Degradation Mechanism of Organic Light-Emitting Diodes under Joule Heating:Â an STM and Photoluminescence Study. Journal of Physical Chemistry B, 2005, 109, 1675-1682.	1.2	151
40	Self-Monitoring and Self-Delivery of Photosensitizer-Doped Nanoparticles for Highly Effective Combination Cancer Therapy <i>in Vitro</i> and <i>in Vivo</i> ACS Nano, 2015, 9, 9741-9756.	7.3	149
41	Silicon Nanowire/Polymer Hybrid Solar Cell-Supercapacitor: A Self-Charging Power Unit with a Total Efficiency of 10.5%. Nano Letters, 2017, 17, 4240-4247.	4.5	149
42	Photocatalytic Hydrogenation of Carbon Dioxide with High Selectivity to Methanol at Atmospheric Pressure. Joule, 2018, 2, 1369-1381.	11.7	148
43	Surface Charge Transfer Doping of Lowâ€Dimensional Nanostructures toward Highâ€Performance Nanodevices. Advanced Materials, 2016, 28, 10409-10442.	11.1	144
44	A New Family of Red Dopants Based on Chromene-Containing Compounds for Organic Electroluminescent Devices. Chemistry of Materials, 2001, 13, 1565-1569.	3.2	140
45	Self-carried curcumin nanoparticles for in vitro and in vivo cancer therapy with real-time monitoring of drug release. Nanoscale, 2015, 7, 13503-13510.	2.8	139
46	High-Sensitivity and Fast-Response Graphene/Crystalline Silicon Schottky Junction-Based Near-IR Photodetectors. IEEE Electron Device Letters, 2013, 34, 1337-1339.	2.2	136
47	Alignment and Patterning of Ordered Smallâ€Molecule Organic Semiconductor Microâ€/Nanocrystals for Device Applications. Advanced Materials, 2016, 28, 2475-2503.	11.1	129
48	Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles. Nano Letters, 2010, 10, 864-868.	4.5	128
49	Intermolecular Chargeâ€Transfer Transition Emitter Showing Thermally Activated Delayed Fluorescence for Efficient Nonâ€Doped OLEDs. Angewandte Chemie - International Edition, 2018, 57, 9480-9484.	7.2	128
50	Single-Crystal Organic Microtubes with a Rectangular Cross Section. Angewandte Chemie - International Edition, 2007, 46, 1525-1528.	7.2	127
51	Facile Oneâ€Step Growth and Patterning of Aligned Squaraine Nanowires via Evaporationâ€Induced Selfâ€Assembly. Advanced Materials, 2008, 20, 1716-1720.	11.1	123
52	Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. Journal of Materials Chemistry A, 2013, 1, 8567.	5.2	123
53	A Dualâ€lon Organic Symmetric Battery Constructed from Phenazineâ€Based Artificial Bipolar Molecules. Angewandte Chemie - International Edition, 2019, 58, 9902-9906.	7.2	123
54	Highly Efficient Nondoped Blue Organic Light-Emitting Diodes Based on Anthracene-Triphenylamine Derivatives. Journal of Physical Chemistry C, 2008, 112, 14603-14606.	1.5	122

#	Article	IF	Citations
55	Highly Stable Near-Infrared Fluorescent Organic Nanoparticles with a Large Stokes Shift for Noninvasive Long-Term Cellular Imaging. ACS Applied Materials & Samp; Interfaces, 2015, 7, 26266-26274.	4.0	122
56	Bipolar Molecule as an Excellent Hole-Transporter for Organic-Light Emitting Devices. Chemistry of Materials, 2009, 21, 1284-1287.	3.2	121
57	A Sustainable Redoxâ€Flow Battery with an Aluminumâ€Based, Deepâ€Eutecticâ€Solvent Anolyte. Angewandte Chemie - International Edition, 2017, 56, 7454-7459.	7.2	121
58	Managing Locally Excited and Chargeâ€Transfer Triplet States to Facilitate Upâ€Conversion in Red TADF Emitters That Are Available for Both Vacuum―and Solutionâ€Processes. Angewandte Chemie - International Edition, 2021, 60, 2478-2484.	7.2	116
59	Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives. Journal of Materials Chemistry, 2010, 20, 1560.	6.7	115
60	12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode. Nano Energy, 2017, 31, 359-366.	8.2	114
61	Novel Carbazol-Pyridine-Carbonitrile Derivative as Excellent Blue Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Organic Light-Emitting Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18930-18936.	4.0	111
62	Cobalt Plasmonic Superstructures Enable Almost 100% Broadband Photon Efficient CO ₂ Photocatalysis. Advanced Materials, 2020, 32, e2000014.	11.1	109
63	Photoconductivity of a Single Smallâ€Molecule Organic Nanowire. Advanced Materials, 2008, 20, 2427-2432.	11.1	108
64	Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrates. Electrochemistry Communications, 2007, 9, 2784-2788.	2.3	106
65	Highly Concentrated Phthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility. CheM, 2018, 4, 2814-2825.	5.8	105
66	Carrier-free functionalized multidrug nanorods for synergistic cancer therapy. Biomaterials, 2013, 34, 8960-8967.	5.7	104
67	2D Ruddlesden–Popper Perovskite Nanoplate Based Deepâ€Blue Lightâ€Emitting Diodes for Light Communication. Advanced Functional Materials, 2019, 29, 1903861.	7.8	101
68	Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. Materials Today, 2019, 24, 17-25.	8.3	98
69	Polyhedral Organic Microcrystals: From Cubes to Rhombic Dodecahedra. Angewandte Chemie - International Edition, 2009, 48, 9121-9123.	7.2	97
70	Morphology-Controllable Synthesis of Pyrene Nanostructures and Its Morphology Dependence of Optical Properties. Journal of Physical Chemistry B, 2005, 109, 18777-18780.	1.2	96
71	The fabrication and optical properties of highly crystalline ultra-long Cu-doped ZnO nanowires. Nanotechnology, 2004, 15, 1152-1155.	1.3	94
72	Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode. Energy Storage Materials, 2019, 16, 236-242.	9.5	91

#	Article	IF	CITATIONS
73	New Ambipolar Hosts Based on Carbazole and 4,5-Diazafluorene Units for Highly Efficient Blue Phosphorescent OLEDs with Low Efficiency Roll-Off. Chemistry of Materials, 2012, 24, 643-650.	3.2	90
74	Carrier-free nanodrugs for safe and effective cancer treatment. Journal of Controlled Release, 2021, 329, 805-832.	4.8	90
75	Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Chemical Science, 2022, 13, 3625-3651.	3.7	90
76	A Novel Colorimetric and Fluorescent Anion Chemosensor Based on the Flavone Quasi-crown Etherâ [^] Metal Complex. Organic Letters, 2004, 6, 1071-1074.	2.4	89
77	High Performance Exciplex-Based Fluorescence–Phosphorescence White Organic Light-Emitting Device with Highly Simplified Structure. Chemistry of Materials, 2015, 27, 5206-5211.	3.2	89
78	Control of Dual Conformations: Developing Thermally Activated Delayed Fluorescence Emitters for Highly Efficient Single-Emitter White Organic Light-Emitting Diodes. ACS Applied Materials & Amp; Interfaces, 2018, 10, 31515-31525.	4.0	88
79	Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. Journal of Physical Chemistry C, 2009, 113, 6761-6767.	1.5	86
80	High-efficiency, air stable graphene/Si micro-hole array Schottky junction solar cells. Journal of Materials Chemistry A, 2013, 1, 15348.	5.2	86
81	Waferâ€Scale Precise Patterning of Organic Singleâ€Crystal Nanowire Arrays via a Photolithographyâ€Assisted Spinâ€Coating Method. Advanced Materials, 2015, 27, 7305-7312.	11.1	84
82	Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. Nanoscale, 2015, 7, 5683-5690.	2.8	84
83	Blue and white organic electroluminescent devices based on 9,10-bis(2′-naphthyl)anthracene. Chemical Physics Letters, 2003, 369, 478-482.	1.2	83
84	Preparation and Size Control of Sub-100 nm Pure Nanodrugs. Nano Letters, 2015, 15, 313-318.	4.5	82
85	Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Materials, $2019,11,.$	3.8	81
86	The design of an extended multiple resonance TADF emitter based on a polycyclic amine/carbonyl system. Materials Chemistry Frontiers, 2020, 4, 2018-2022.	3.2	81
87	Anthracene derivative for a non-doped blue-emitting organic electroluminescence device with both excellent color purity and high efficiency. Chemical Physics Letters, 2004, 397, 1-4.	1.2	78
88	The Nanoassembly of an Intrinsically Cytotoxic Nearâ€Infrared Dye for Multifunctionally Synergistic Theranostics. Small, 2019, 15, e1903121.	5.2	76
89	A Microchannelâ€Confined Crystallization Strategy Enables Blade Coating of Perovskite Single Crystal Arrays for Device Integration. Advanced Materials, 2020, 32, e1908340.	11.1	75
90	Single vs double atom catalyst for N ₂ activation in nitrogen reduction reaction: A DFT perspective. EcoMat, 2020, 2, e12014.	6.8	75

#	Article	IF	CITATIONS
91	A Fully Solutionâ€Printed Photosynaptic Transistor Array with Ultralow Energy Consumption for Artificialâ€Vision Neural Networks. Advanced Materials, 2022, 34, e2200380.	11.1	75
92	Ultrabright and ultrastable near-infrared dye nanoparticles for inÂvitro and inÂvivo bioimaging. Biomaterials, 2012, 33, 7803-7809.	5.7	74
93	Flexible graphene/silicon heterojunction solar cells. Journal of Materials Chemistry A, 2015, 3, 14370-14377.	5.2	74
94	Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. Journal of Crystal Growth, 2004, 273, 285-291.	0.7	72
95	Structural and electronic properties of ZnO nanotubes from density functional calculations. Nanotechnology, 2007, 18, 485713.	1.3	72
96	Mitochondrial-Targeting Lonidamine-Doxorubicin Nanoparticles for Synergistic Chemotherapy to Conquer Drug Resistance. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43498-43507.	4.0	72
97	Dual-Band, High-Performance Phototransistors from Hybrid Perovskite and Organic Crystal Array for Secure Communication Applications. ACS Nano, 2019, 13, 5910-5919.	7.3	72
98	Single-Crystal 9,10-Diphenylanthracene Nanoribbons and Nanorods. Chemistry of Materials, 2008, 20, 6945-6950.	3.2	71
99	The Design of Quaternary Nitrogen Redox Center for High-Performance Organic Battery Materials. Matter, 2019, 1, 945-958.	5.0	71
100	One‧tep Selfâ€Assembly, Alignment, and Patterning of Organic Semiconductor Nanowires by Controlled Evaporation of Confined Microfluids. Angewandte Chemie - International Edition, 2011, 50, 2811-2815.	7.2	70
101	Synthesis, Structure, and Photophysical Properties of Two Four-Coordinate Cu ^I –NHC Complexes with Efficient Delayed Fluorescence. Inorganic Chemistry, 2016, 55, 2157-2164.	1.9	70
102	Isomeric Thermally Activated Delayed Fluorescence Emitters for Color Purity-Improved Emission in Organic Light-Emitting Devices. ACS Applied Materials & Emitters for Color Purity-Improved Emission in Organic Light-Emitting Devices.	4.0	69
103	Size Controllable and Surface Tunable Zeolitic Imidazolate Framework-8–Poly(acrylic acid sodium) Tj ETQq1 I ACS Applied Materials & Diterfaces, 2017, 9, 32990-33000.	0.784314 4.0	rgBT /Over 6 69
104	Novel small-molecule electron donor for solution-processed ternary exciplex with 24% external quantum efficiency in organic light-emitting diode. Materials Horizons, 2019, 6, 1425-1432.	6.4	69
105	Facile Oneâ€Step Fabrication of Ordered Organic Nanowire Films. Advanced Materials, 2009, 21, 4172-4175.	11.1	68
106	High-Efficiency Nondoped Deep-Blue-Emitting Organic Electroluminescent Device. Chemistry of Materials, 2010, 22, 2138-2141.	3.2	68
107	High-Performance, Simplified Fluorescence and Phosphorescence Hybrid White Organic Light-Emitting Devices Allowing Complete Triplet Harvesting. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26135-26142.	4.0	68
108	Organic nanostructures of thermally activated delayed fluorescent emitters with enhanced intersystem crossing as novel metal-free photosensitizers. Chemical Communications, 2016, 52, 11744-11747.	2.2	68

#	Article	IF	CITATIONS
109	Novel Blue Fluorophor with High Triplet Energy Level for High Performance Single-Emitting-Layer Fluorescence and Phosphorescence Hybrid White Organic Light-Emitting Diodes. Chemistry of Materials, 2013, 25, 4454-4459.	3.2	67
110	Coumarin-Based Thermally Activated Delayed Fluorescence Emitters with High External Quantum Efficiency and Low Efficiency Roll-off in the Devices. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8848-8854.	4.0	67
111	Atomic Layer Deposition of Vanadium Oxide as Holeâ€Selective Contact for Crystalline Silicon Solar Cells. Advanced Electronic Materials, 2020, 6, 2000467.	2.6	67
112	Template-Free Electrochemical Synthesis of Single-Crystal CuTe Nanoribbons. Crystal Growth and Design, 2008, 8, 1789-1791.	1.4	65
113	Large-scale assembly of highly sensitive Si-based flexible strain sensors for human motion monitoring. Nanoscale, 2016, 8, 2123-2128.	2.8	65
114	Approaching Efficient and Narrow RGB Electroluminescence from D–A-Type TADF Emitters Containing an Identical Multiple Resonance Backbone as the Acceptor. ACS Applied Materials & Diterfaces, 2021, 13, 36089-36097.	4.0	64
115	Dart-Shaped Tricrystal ZnS Nanoribbons. Angewandte Chemie - International Edition, 2006, 45, 2568-2571.	7.2	62
116	Carrier-free, functionalized drug nanoparticles for targeted drug delivery. Chemical Communications, 2012, 48, 8120.	2,2	62
117	Organic–inorganic hybrid perovskite quantum dots for light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4831-4841.	2.7	62
118	EQE Climbing Over 6% at High Brightness of 14350 cd/m ² in Deep-Blue OLEDs Based on Hybridized Local and Charge-Transfer Fluorescence. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9629-9637.	4.0	61
119	Enhancement of Photocatalytic Water Oxidation Activity on IrO _{<i>x</i><fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<f>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<f>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<fi>x<f></f></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></f></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></f></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi></fi>}	>y1/5> <td>пржо</td>	пржо
120	Highâ€Performance Nondoped Blue Delayed Fluorescence Organic Lightâ€Emitting Diodes Featuring Low Driving Voltage and High Brightness. Advanced Science, 2020, 7, 1902508.	5.6	60
121	Efficient Orange-Red Thermally Activated Delayed Fluorescence Emitters Feasible for Both Thermal Evaporation and Solution Process. ACS Applied Materials & Interfaces, 2019, 11, 29086-29093.	4.0	57
122	Patterning Liquid Crystalline Organic Semiconductors via Inkjet Printing for Highâ€Performance Transistor Arrays and Circuits. Advanced Functional Materials, 2021, 31, 2100237.	7.8	57
123	Self-Assembly of Electron Donor–Acceptor-Based Carbazole Derivatives: Novel Fluorescent Organic Nanoprobes for Both One- and Two-Photon Cellular Imaging. ACS Applied Materials & Diterfaces, 2016, 8, 11355-11365.	4.0	56
124	Precise Patterning of Laterally Stacked Organic Microbelt Heterojunction Arrays by Surfaceâ€Energyâ€Controlled Stepwise Crystallization for Ambipolar Organic Fieldâ€Effect Transistors. Advanced Materials, 2018, 30, e1800187.	11.1	56
125	Photoluminescence and electroluminescence of pyrazoline monomers and dimers. Chemical Physics Letters, 2000, 320, 77-80.	1.2	55
126	Near-infrared fluorescence imaging using organic dye nanoparticles. Biomaterials, 2014, 35, 3356-3364.	5.7	55

#	Article	IF	CITATIONS
127	Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications. Journal of Materials Chemistry C, 2014, 2, 201-207.	2.7	55
128	Unraveling the Mechanism of the Persistent Photoconductivity in Organic Phototransistors. Advanced Functional Materials, 2019, 29, 1905657.	7.8	54
129	A Facile Method for the Growth of Organic Semiconductor Single Crystal Arrays on Polymer Dielectric toward Flexible Fieldâ€Effect Transistors. Advanced Functional Materials, 2019, 29, 1902494.	7.8	54
130	Manipulating exciton dynamics of thermally activated delayed fluorescence materials for tuning two-photon nanotheranostics. Chemical Science, 2020, 11, 888-895.	3.7	54
131	Iodineâ€Dopedâ€Poly(3,4â€Ethylenedioxythiophene)â€Modified Si Nanowire 1D Coreâ€Shell Arrays as an Efficien Photocatalyst for Solar Hydrogen Generation. Advanced Materials, 2012, 24, 6199-6203.	t 11.1	53
132	High Performance All Fluorescence White Organic Light Emitting Devices with a Highly Simplified Structure Based on Thermally Activated Delayed Fluorescence Dopants and Host. ACS Applied Materials & Samp; Interfaces, 2016, 8, 32984-32991.	4.0	53
133	Novel bipolar host materials based on 1,3,5-triazine derivatives for highly efficient phosphorescent OLEDs with extremely low efficiency roll-off. Physical Chemistry Chemical Physics, 2012, 14, 14255.	1.3	52
134	Surface charge transfer doping induced inversion layer for high-performance graphene/silicon heterojunction solar cells. Journal of Materials Chemistry A, 2017, 5, 285-291.	5.2	52
135	Facile Assembly of Highâ€Quality Organic–Inorganic Hybrid Perovskite Quantum Dot Thin Films for Bright Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1705189.	7.8	52
136	Light-trapping enhanced ZnO–MoS ₂ core–shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. Journal of Materials Chemistry C, 2018, 6, 7077-7084.	2.7	52
137	Waterâ€Surface Drag Coating: A New Route Toward Highâ€Quality Conjugated Smallâ€Molecule Thin Films with Enhanced Charge Transport Properties. Advanced Materials, 2021, 33, e2005915.	11.1	52
138	A Novel Yellow Fluorescent Dopant for High-Performance Organic Electroluminescent Devices. Chemistry of Materials, 2001, 13, 456-458.	3.2	51
139	Efficient blue organic light-emitting devices based on novel anthracence derivatives with pronounced thermal stability and excellent film-forming property. Chemical Physics Letters, 2006, 429, 622-627.	1.2	51
140	New Fluorene Derivatives for Blue Electroluminescent Devices:  Influence of Substituents on Thermal Properties, Photoluminescence, and Electroluminescence. Journal of Physical Chemistry C, 2008, 112, 2165-2169.	1.5	51
141	Hue tunable, high color saturation and high-efficiency graphene/silicon heterojunction solar cells with MgF2/ZnS double anti-reflection layer. Nano Energy, 2018, 46, 257-265.	8.2	51
142	Blue and white solution-processed TADF-OLEDs with over 20% EQE, low driving voltages and moderate efficiency decrease based on interfacial exciplex hosts. Journal of Materials Chemistry C, 2019, 7, 11806-11812.	2.7	51
143	Hydrogen bond-modulated molecular packing and its applications in high-performance non-doped organic electroluminescence. Materials Horizons, 2020, 7, 2734-2740.	6.4	51
144	Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. Nano Letters, 2020, 20, 2478-2485.	4.5	51

#	Article	IF	Citations
145	A multifunctional phosphine oxide–diphenylamine hybrid compound as a high performance deep-blue fluorescent emitter and green phosphorescent host. Chemical Communications, 2014, 50, 2027.	2.2	50
146	Dual-Targeted Multifunctional Nanoparticles for Magnetic Resonance Imaging Guided Cancer Diagnosis and Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9986-9995.	4.0	50
147	Highly sensitive, reproducible, and stable SERS sensors based on well-controlled silver nanoparticle-decorated silicon nanowire building blocks. Journal of Materials Chemistry, 2012, 22, 14127.	6.7	49
148	Saturated Vapor-Assisted Growth of Single-Crystalline Organic–Inorganic Hybrid Perovskite Nanowires for High-Performance Photodetectors with Robust Stability. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 10287-10295.	4.0	49
149	Enhanced cyclability of organic redox flow batteries enabled by an artificial bipolar molecule in neutral aqueous electrolyte. Journal of Power Sources, 2019, 417, 83-89.	4.0	49
150	Meniscus-guided coating of organic crystalline thin films for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 9133-9146.	2.7	49
151	Efficient white organic light-emitting devices based on phosphorescent iridium complexes. Organic Electronics, 2010, 11, 1511-1515.	1.4	48
152	Using fluorene to lock electronically active moieties in thermally activated delayed fluorescence emitters for high-performance non-doped organic light-emitting diodes with suppressed roll-off. Chemical Science, 2021, 12, 1495-1502.	3.7	48
153	Template-Free Electrodeposition of One-Dimensional Nanostructures of Tellurium. Crystal Growth and Design, 2009, 9, 663-666.	1.4	47
154	Shape design of high drug payload nanoparticles for more effective cancer therapy. Chemical Communications, 2013, 49, 10989.	2.2	47
155	Aggregation-Induced Near-Infrared Absorption of Squaraine Dye in an Albumin Nanocomplex for Photoacoustic Tomography in Vivo. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17985-17992.	4.0	47
156	Theoretical investigation of the singlet–triplet splittings for carbazole-based thermally activated delayed fluorescence emitters. Physical Chemistry Chemical Physics, 2016, 18, 26623-26629.	1.3	47
157	Memory phototransistors based on exponential-association photoelectric conversion law. Nature Communications, 2019, 10, 1294.	5.8	47
158	Sonochemical synthesis of mass single-crystal PbS nanobelts. Journal of Solid State Chemistry, 2005, 178, 399-403.	1.4	46
159	High-sensitivity pesticide detection via silicon nanowires-supported acetylcholinesterase-based electrochemical sensors. Applied Physics Letters, 2008, 93, .	1.5	46
160	Aligned ultralong nanowire arrays and their application in flexible photodetector devices. Journal of Materials Chemistry, 2012, 22, 14357.	6.7	46
161	Zn-based eutectic mixture as anolyte for hybrid redox flow batteries. Scientific Reports, 2018, 8, 5740.	1.6	46
162	A Highly Conductive Titanium Oxynitride Electronâ€Selective Contact for Efficient Photovoltaic Devices. Advanced Materials, 2020, 32, e2002608.	11.1	46

#	Article	IF	CITATIONS
163	Efficient blue and white organic light-emitting devices based on a single bipolar emitter. Applied Physics Letters, 2007, 91, 013507.	1.5	45
164	Large-Scale Fabrication of Silicon Nanowires for Solar Energy Applications. ACS Applied Materials & Energy Interfaces, 2017, 9, 34527-34543.	4.0	45
165	Pyrazoline derivatives for blue color emitter in organic electroluminescent devices. Thin Solid Films, 2000, 371, 40-46.	0.8	44
166	Red electroluminescence and photoluminescence properties of new porphyrin compounds. Chemical Physics Letters, 2003, 382, 561-566.	1.2	44
167	Bulk Preparation of Si-SiOx Hierarchical Structures: High-Density Radially Oriented Amorphous Silica Nanowires on a Single-Crystal Silicon Nanocore. Angewandte Chemie - International Edition, 2005, 44, 6934-6937.	7.2	44
168	Gold nanoparticle modified silicon nanowires as biosensors. Nanotechnology, 2006, 17, S276-S279.	1.3	44
169	Construction of Single-Atom Platinum Catalysts Enabled by CsPbBr ₃ Nanocrystals. ACS Nano, 2021, 15, 13129-13139.	7.3	44
170	Novel fluorescent sensor for detection of Cu(II) in aqueous solution. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 749-752.	2.0	43
171	A triphenylamine derivative as a single-emitting component for highly-efficient white electroluminescent devices. Journal of Materials Chemistry, 2008, 18, 3981.	6.7	43
172	Organic Nanowire/Crystalline Silicon <i>p</i> – <i>n</i> Heterojunctions for High-Sensitivity, Broadband Photodetectors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2039-2045.	4.0	43
173	Efficient Solar Energy Harvesting and Storage through a Robust Photocatalyst Driving Reversible Redox Reactions. Advanced Materials, 2018, 30, e1802294.	11.1	43
174	High-efficiency polymer electrophosphorescent diodes based on an Ir (III) complex. Applied Physics Letters, 2005, 87, 221103.	1.5	42
175	Formation and Photoelectric Properties of Periodically Twinned ZnSe/SiO2 Nanocables. Journal of Physical Chemistry C, 2009, 113, 834-838.	1.5	42
176	A Novel Type of Aqueous Dispersible Ultrathin-Layered Double Hydroxide Nanosheets for in Vivo Bioimaging and Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34185-34193.	4.0	42
177	A new blue-emitting benzothiazole derivative for organic electroluminescent devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 182-185.	1.7	41
178	One-step growth of organic single-crystal p–n nano-heterojunctions with enhanced visible-light photocatalytic activity. Chemical Communications, 2013, 49, 9200.	2.2	41
179	Rapid-releasing of HI-6 via brain-targeted mesoporous silica nanoparticles for nerve agent detoxification. Nanoscale, 2016, 8, 9537-9547.	2.8	41
180	A comparative study of carbazole-based thermally activated delayed fluorescence emitters with different steric hindrance. Journal of Materials Chemistry C, 2017, 5, 4797-4803.	2.7	41

#	Article	IF	CITATIONS
181	Multifunctional Phenanthroimidazole Derivatives to Realize Highâ€Performance Deepâ€Blue and White Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700498.	3.6	41
182	Precise Patterning of Organic Semiconductor Crystals for Integrated Device Applications. Small, 2019, 15, e1900332.	5.2	41
183	Managing Intersegmental Chargeâ€Transfer and Multiple Resonance Alignments of D ₃ â€A Typed TADF Emitters for Red OLEDs with Improved Efficiency and Color Purity. Advanced Optical Materials, 2022, 10, 2101789.	3.6	41
184	Self-driven, broadband and ultrafast photovoltaic detectors based on topological crystalline insulator SnTe/Si heterostructures. Journal of Materials Chemistry A, 2017, 5, 11171-11178.	5.2	40
185	Red/Nearâ€Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency. Angewandte Chemie, 2019, 131, 14802-14807.	1.6	40
186	Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex. Applied Physics Letters, 2006, 88, 093510.	1.5	39
187	White OLEDs with an EQE of 21% at 5000 cd m ^{â°'2} and Ultra High Color Stability Based on Exciplex Host. Advanced Optical Materials, 2018, 6, 1800825.	3.6	39
188	Tricomponent Exciplex Emitter Realizing over 20% External Quantum Efficiency in Organic Lightâ€Emitting Diode with Multiple Reverse Intersystem Crossing Channels. Advanced Science, 2019, 6, 1801938.	5.6	39
189	Singleâ€Stimulusâ€Induced Modulation of Multiple Optical Properties. Advanced Materials, 2019, 31, e1900388.	11.1	39
190	MoO ₃ Nanodots Decorated CdS Nanoribbons for High-Performance, Homojunction Photovoltaic Devices on Flexible Substrates. Nano Letters, 2015, 15, 3590-3596.	4.5	38
191	Green Mass Production of Pure Nanodrugs via an Ice-Template-Assisted Strategy. Nano Letters, 2019, 19, 658-665.	4.5	37
192	Blue organic electroluminescence of 1,3,5-triaryl-2-pyrazoline. Synthetic Metals, 1999, 105, 141-144.	2.1	36
193	Aligned nanowire arrays on thin flexible substrates for organic transistors with high bending stability. Journal of Materials Chemistry C, 2014, 2, 1314-1320.	2.7	36
194	Shape regulated anticancer activities and systematic toxicities of drug nanocrystals in vivo. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 181-189.	1.7	36
195	Exciton dissociation and photovoltaic effect in germanium nanocrystals and poly(3-hexylthiophene) composites. Applied Physics Letters, 2009, 94, 233504.	1.5	35
196	Large-area aligned growth of single-crystalline organic nanowire arrays for high-performance photodetectors. Nanotechnology, 2013, 24, 355201.	1.3	35
197	Tuning the Electronic and Optical Properties of Monolayers As, Sb, and Bi via Surface Charge Transfer Doping. Journal of Physical Chemistry C, 2017, 121, 19530-19537.	1.5	35
198	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie - International Edition, 2021, 60, 25878-25883.	7.2	35

#	Article	IF	CITATIONS
199	Efficient violet non-doped organic light-emitting device based on a pyrene derivative with novel molecular structure. Organic Electronics, 2015, 23, 179-185.	1.4	34
200	Multifunctional terpyridine/diphenylamine derivatives as highly efficient blue fluorescent emitters and red phosphorescent hosts. Journal of Materials Chemistry C, 2015, 3, 1068-1076.	2.7	34
201	Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery. Nanoscale, 2016, 8, 8118-8125.	2.8	34
202	Few-layer formamidinium lead bromide nanoplatelets for ultrapure-green and high-efficiency light-emitting diodes. Nano Research, 2019, 12, 171-176.	5.8	34
203	Dilution of the Electron Density in the Ï€â€Conjugated Skeleton of Organic Cathode Materials Improves the Discharge Voltage. ChemSusChem, 2020, 13, 2264-2270.	3.6	34
204	Thermally Activated Delayed Fluorescence Warm White Organic Light Emitting Devices with External Quantum Efficiencies Over 30%. Advanced Functional Materials, 2021, 31, 2101647.	7.8	34
205	Anthraquinone-based anode material for aqueous redox flow batteries operating in nondemanding atmosphere. Journal of Power Sources, 2021, 501, 229984.	4.0	34
206	Combining histone deacetylase inhibitors (HDACis) with other therapies for cancer therapy. European Journal of Medicinal Chemistry, 2021, 226, 113825.	2.6	34
207	ZnSe nanowire/Si p–n heterojunctions: device construction and optoelectronic applications. Nanotechnology, 2013, 24, 395201.	1.3	33
208	High efficiency non-doped deep-blue and fluorescent/phosphorescent white organic light-emitting diodes based on an anthracene derivative. Synthetic Metals, 2015, 203, 49-53.	2.1	33
209	Promoting Charge Separation in Semiconductor Nanocrystal Superstructures for Enhanced Photocatalytic Activity. Advanced Materials Interfaces, 2018, 5, 1701694.	1.9	33
210	Salt-templated growth of monodisperse hollow nanostructures. Journal of Materials Chemistry A, 2019, 7, 1404-1409.	5.2	33
211	Chain rigidity modification to promote the electrochemical performance of polymeric battery electrode materials. Journal of Materials Chemistry A, 2019, 7, 10581-10588.	5.2	33
212	Synthesis and optical properties of Pb-doped ZnO nanowires. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 405-410.	0.8	32
213	ZnSe nanoribbon/Si nanowire p–n heterojunction arrays and their photovoltaic application with graphene transparent electrodes. Journal of Materials Chemistry, 2012, 22, 22873.	6.7	32
214	Silicon nanowire based single-molecule SERS sensor. Nanoscale, 2013, 5, 8172.	2.8	32
215	Real-time imaging and tracking of ultrastable organic dye nanoparticles in living cells. Biomaterials, 2016, 93, 38-47.	5.7	32
216	Silicon/Organic Heterojunction for Photoelectrochemical Energy Conversion Photoanode with a Record Photovoltage. ACS Nano, 2016, 10, 9411-9419.	7.3	32

#	Article	IF	CITATIONS
217	Releasing the Trapped Light for Efficient Silver Nanowiresâ€Based White Flexible Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2019, 7, 1900985.	3.6	32
218	A Dualâ€lon Organic Symmetric Battery Constructed from Phenazineâ€Based Artificial Bipolar Molecules. Angewandte Chemie, 2019, 131, 10007-10011.	1.6	32
219	Conformal MoS ₂ /Silicon Nanowire Array Heterojunction with Enhanced Light Trapping and Effective Interface Passivation for Ultraweak Infrared Light Detection. Advanced Functional Materials, 2022, 32, 2108174.	7.8	32
220	Improved color purity and efficiency of blue organic light-emitting diodes via suppression of exciplex formation. Synthetic Metals, 2001, 118, 193-196.	2.1	31
221	Silicon Nanowire-Based Surface-Enhanced Raman Spectroscopy Endoscope for Intracellular pH Detection. ACS Applied Materials & Lamp; Interfaces, 2013, 5, 5811-5814.	4.0	31
222	Achieving Highly Efficient Simple-Emission Layer Fluorescence/Phosphorescence Hybrid White Organic Light-Emitting Devices via Effective Confinement of Triplets. ACS Applied Materials & Light-8970.	4.0	31
223	A high-efficiency hybrid white organic light-emitting diode enabled by a new blue fluorophor. Journal of Materials Chemistry C, 2015, 3, 4283-4289.	2.7	31
224	Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy. Small, 2021, 17, e2103127.	5.2	31
225	One- or Semi-Two-Dimensional Organic Nanocrystals Induced by Directional Supramolecular Interactions. Journal of Physical Chemistry C, 2008, 112, 16264-16268.	1.5	30
226	Efficiency enhancement utilizing hybrid charge generation layer in tandem organic light-emitting diodes. Applied Physics Letters, 2012, 101, .	1.5	30
227	Carrier-free, water dispersible and highly luminescent dye nanoparticles for targeted cell imaging. Nanoscale, 2012, 4, 5373.	2.8	30
228	Simultaneous enhanced diagnosis and photodynamic therapy of photosensitizer-doped perylene nanoparticles via doping, fluorescence resonance energy transfer, and antenna effect. Chemical Communications, 2013, 49, 8072.	2.2	30
229	In Situ Integration of Squaraine-Nanowire-Array-Based Schottky-Type Photodetectors with Enhanced Switching Performance. ACS Applied Materials & Enhanced, 2013, 5, 12288-12294.	4.0	30
230	Waterâ€Dispersible, pHâ€Stable and Highly‣uminescent Organic Dye Nanoparticles with Amplified Emissions for In Vitro and In Vivo Bioimaging. Small, 2014, 10, 1125-1132.	5.2	30
231	Efficient Visible Light Photocatalyst Fabricated by Depositing Plasmonic Ag Nanoparticles on Conductive Polymer-Protected Si Nanowire Arrays for Photoelectrochemical Hydrogen Generation. ACS Applied Materials & Diterfaces, 2014, 6, 9742-9750.	4.0	30
232	Excimer emission induced intra-system self-absorption enhancement – a novel strategy to realize high efficiency and excellent stability ternary organic solar cells processed in green solvents. Journal of Materials Chemistry A, 2018, 6, 23840-23855.	5.2	30
233	Thermally Activated Delayed Fluorescent Dendrimers that Underpin Highâ€Efficiency Hostâ€Free Solutionâ€Processed Organic Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2110344.	11.1	30
234	Progress and Future Prospects of Wideâ∈Bandgap Metalâ∈Compoundâ∈Based Passivating Contacts for Silicon Solar Cells. Advanced Materials, 2022, 34, e2200344.	11.1	30

#	Article	IF	CITATIONS
235	Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems. Materials Horizons, 2022, 9, 2226-2232.	6.4	30
236	Sb-induced bicrystal ZnO nanobelts. Applied Physics Letters, 2005, 86, 013103.	1.5	29
237	Optical properties of silicon nanowires from cathodoluminescence imaging and time-resolved photoluminescence spectroscopy. Physical Review B, 2007, 75, .	1.1	29
238	Efficient blue organic light-emitting devices with a new bipolar emitter. Organic Electronics, 2011, 12, 358-363.	1.4	29
239	Self-Assembly and Hierarchical Patterning of Aligned Organic Nanowire Arrays by Solvent Evaporation on Substrates with Patterned Wettability. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5757-5762.	4.0	29
240	Efficient fluorescence/phosphorescence white organic light-emitting diodes with ultra high color stability and mild efficiency roll-off. Applied Physics Letters, 2015, 107, .	1.5	29
241	Gram-scale synthesis of superparamagnetic Fe ₃ O ₄ nanocrystal clusters with long-term charge stability for highly stable magnetically responsive photonic crystals. Nanoscale, 2016, 8, 19036-19042.	2.8	29
242	Centimeter-Long Single-Crystalline Si Nanowires. Nano Letters, 2017, 17, 7323-7329.	4.5	29
243	Efficient solution-processed orange-red organic light-emitting diodes based on a novel thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2018, 6, 9152-9157.	2.7	29
244	Scalable Growth of Organic Singleâ€Crystal Films via an Orientation Filter Funnel for Highâ€Performance Transistors with Excellent Uniformity. Advanced Materials, 2022, 34, e2109818.	11.1	29
245	Efficient, color-stable and high color-rendering-index white organic light-emitting diodes employing full thermally activated delayed fluorescence system. Organic Electronics, 2017, 50, 466-472.	1.4	28
246	Localâ€Curvatureâ€Controlled Nonâ€Epitaxial Growth of Hierarchical Nanostructures. Angewandte Chemie - International Edition, 2018, 57, 3772-3776.	7.2	28
247	Isomeric thermally activated delayed fluorescence emitters based on indolo[2,3- <i>b</i>)acridine electron-donor: a compromising optimization for efficient orange–red organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2898-2904.	2.7	28
248	Efficient solution-processed red organic light-emitting diode based on an electron-donating building block of pyrrolo[3,2-b]pyrrole. Organic Electronics, 2019, 65, 110-115.	1.4	28
249	Ï€-Extended Dihydrophenazine-Based Polymeric Cathode Material for High-Performance Organic Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17868-17875.	3.2	28
250	Blue Light-Emitting Bisorthometalated Ir(III) Complex:  Origin of Blue Emission and Application in Electrophosphorescent Devices. Journal of Physical Chemistry C, 2008, 112, 4743-4747.	1.5	27
251	Doping dependent crystal structures and optoelectronic properties of n-type CdSe:Ga nanowries. Nanoscale, 2011, 3, 4798.	2.8	27
252	1D Organic–Inorganic Hybrid Perovskite Micro/Nanocrystals: Fabrication, Assembly, and Optoelectronic Applications. Small Methods, 2018, 2, 1700340.	4.6	27

#	Article	IF	CITATIONS
253	Intramolecular H-bond design for efficient orange–red thermally activated delayed fluorescence based on a rigid dibenzo[<i>f</i> , <i>h</i>)pyrido[2,3- <i>b</i>)quinoxaline acceptor. Journal of Materials Chemistry C, 2020, 8, 15728-15734.	2.7	27
254	Grapheneâ€Quantumâ€Dotsâ€Induced Centimeterâ€Sized Growth of Monolayer Organic Crystals for Highâ€Performance Transistors. Advanced Materials, 2020, 32, e2003315.	11.1	27
255	Compact Biomimetic Hair Sensors Based on Single Silicon Nanowires for Ultrafast and Highly-Sensitive Airflow Detection. Nano Letters, 2021, 21, 4684-4691.	4.5	27
256	Observation of persistent photoconductance in single ZnO nanotube. Applied Physics Letters, 2009, 94, 063120.	1.5	26
257	Non-blinking, highly luminescent, pH- and heavy-metal-ion-stable organic nanodots for bio-imaging. Journal of Materials Chemistry B, 2013, 1, 3144.	2.9	26
258	Precisely Patterned Growth of Ultra-Long Single-Crystalline Organic Microwire Arrays for Near-Infrared Photodetectors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 7912-7918.	4.0	26
259	Optimization on Molecular Restriction for Highly Efficient Thermally Activated Delayed Fluorescence Emitters. Advanced Optical Materials, 2018, 6, 1800935.	3.6	26
260	External-force-driven solution epitaxy of large-area 2D organic single crystals for high-performance field-effect transistors. Nano Research, 2019, 12, 2796-2801.	5.8	26
261	In-situ device integration of large-area patterned organic nanowire arrays for high-performance optical sensors. Scientific Reports, 2013, 3, 3248.	1.6	25
262	A Bipolar Transporter as an Efficient Green Fluorescent Emitter and Host for Red Phosphors in Multi― and Single‣ayer Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2014, 20, 13762-13769.	1.7	25
263	A High-yield Two-step Transfer Printing Method for Large-scale Fabrication of Organic Single-crystal Devices on Arbitrary Substrates. Scientific Reports, 2014, 4, 5358.	1.6	25
264	A surface curvature oscillation model for vapour–liquid–solid growth of periodic one-dimensional nanostructures. Nature Communications, 2015, 6, 6412.	5.8	25
265	High-mobility air-stable n-type field-effect transistors based on large-area solution-processed organic single-crystal arrays. Nano Research, 2018, 11, 882-891.	5.8	25
266	Air Effect on the Ideality of pâ€Type Organic Fieldâ€Effect Transistors: A Doubleâ€Edged Sword. Advanced Functional Materials, 2019, 29, 1906653.	7.8	25
267	Roles of interfaces in the ideality of organic field-effect transistors. Nanoscale Horizons, 2020, 5, 454-472.	4.1	25
268	Bromine-substituted triphenylamine derivatives with improved hole-mobility for highly efficient green phosphorescent OLEDs with a low operating voltage. Journal of Materials Chemistry C, 2016, 4, 10301-10308.	2.7	24
269	Lithium intercalation and diffusion in TiO ₂ nanotubes: a first-principles investigation. Physical Chemistry Chemical Physics, 2016, 18, 24370-24376.	1.3	24
270	pH and redox dual responsive carrier-free anticancer drug nanoparticles for targeted delivery and synergistic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102008.	1.7	24

#	Article	IF	CITATIONS
271	Managing Locally Excited and Chargeâ€Transfer Triplet States to Facilitate Upâ€Conversion in Red TADF Emitters That Are Available for Both Vacuum―and Solutionâ€Processes. Angewandte Chemie, 2021, 133, 2508-2514.	1.6	24
272	Ru-Catalyzed Reverse Water Gas Shift Reaction with Near-Unity Selectivity and Superior Stability. , 2021, 3, 1652-1659.		24
273	Light-on fluorescent chemosensor for fluoride in aqueous solution based on ternary complex of Zr-EDTA and $4\hat{a}$ \in 2-N,N-dimethylamino-6-methyl-3-hydroxylflavone. Sensors and Actuators B: Chemical, 2007, 125, 447-452.	4.0	23
274	An organic nanowire–metal nanoparticle hybrid for the highly enhanced fluorescence detection of dopamine. Chemical Communications, 2012, 48, 5883.	2.2	23
275	C–H··Â-Ï€ Interaction Induced Formation of Microtubes with Enhanced Emission. Crystal Growth and Design, 2012, 12, 1227-1231.	1.4	23
276	Very facile fabrication of aligned organic nanowires based high-performance top-gate transistors on flexible, transparent substrate. Organic Electronics, 2014, 15, 1317-1323.	1.4	23
277	The impact of light irradiation timing on the efficacy of nanoformula-based photo/chemo combination therapy. Journal of Materials Chemistry B, 2018, 6, 3692-3702.	2.9	23
278	Pyridyl group design in viologens for anolyte materials in organic redox flow batteries. RSC Advances, 2018, 8, 18762-18770.	1.7	23
279	High-Performance Nanofloating Gate Memory Based on Lead Halide Perovskite Nanocrystals. ACS Applied Materials & Description (1997) Appl	4.0	23
280	Singleâ€Photomolecular Nanotheranostics for Synergetic Nearâ€Infrared Fluorescence and Photoacoustic Imagingâ€Guided Highly Effective Photothermal Ablation. Small, 2020, 16, e2002672.	5.2	23
281	Hydrogenâ€Bondâ€Assisted Exciplex Emitters Realizing Improved Efficiencies and Stabilities in Organic Light Emitting Diodes. Advanced Functional Materials, 2021, 31, 2010100.	7.8	23
282	Functional Core/Shell Drug Nanoparticles for Highly Effective Synergistic Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 1475-1485.	3.9	22
283	Hydrogenâ€Bonding Strategy to Optimize Charge Distribution of PC ₇₁ BM and Enable a High Efficiency of 12.45% for Organic Solar Cells. Solar Rrl, 2018, 2, 1800038.	3.1	22
284	TiO ₂ -Photoanode-Assisted Direct-Solar-Energy Harvesting and Storage in a Solar-Powered Redox Cell Using Halides as Active Materials. ACS Applied Materials & Interfaces, 2018, 10, 23048-23054.	4.0	22
285	Highly efficient ternary polymer-based solution-processable exciplex with over 20% external quantum efficiency in organic light-emitting diode. Organic Electronics, 2020, 76, 105449.	1.4	22
286	Nonlinear optical refractive indices and absorption coefficients of $\hat{l}\pm,\hat{l}^2$ -unsaturated ketone derivatives. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1456.	0.9	21
287	An effective fluorescent chemosensor for the detection of copper(II). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 61-65.	2.0	21
288	Formation of ZnS/SiO2 nanocables. Applied Physics Letters, 2005, 86, 173111.	1.5	21

#	Article	IF	CITATIONS
289	Stability of Hydrogen-Terminated Surfaces of Silicon Nanowires in Aqueous Solutions. Journal of Physical Chemistry C, 2011, 115, 3866-3871.	1.5	21
290	A novel nicotinonitrile derivative as an excellent multifunctional blue fluorophore for highly efficient hybrid white organic light-emitting devices. Journal of Materials Chemistry C, 2015, 3, 8817-8823.	2.7	21
291	High-performance red organic light-emitting devices based on an exciplex system with thermally activated delayed fluorescence characteristic. Organic Electronics, 2016, 39, 10-15.	1.4	21
292	Ordered and Patterned Assembly of Organic Micro/Nanocrystals for Flexible Electronic and Optoelectronic Devices. Advanced Materials Technologies, 2017, 2, 1600280.	3.0	21
293	Controlled Growth of Large-Area Aligned Single-Crystalline Organic Nanoribbon Arrays for Transistors and Light-Emitting Diodes Driving. Nano-Micro Letters, 2017, 9, 52.	14.4	21
294	A general and mild route to highly dispersible anisotropic magnetic colloids for sensing weak magnetic fields. Journal of Materials Chemistry C, 2018, 6, 5528-5535.	2.7	21
295	Development of Red Exciplex for Efficient OLEDs by Employing a Phosphor as a Component. Frontiers in Chemistry, 2019, 7, 16.	1.8	21
296	Allâ€Earthâ€Abundant Photothermal Silicon Platform for CO ₂ Catalysis with Nearly 100% Sunlight Harvesting Ability. Solar Rrl, 2021, 5, 2000387.	3.1	21
297	Improving Ideality of Pâ€Type Organic Fieldâ€Effect Transistors via Preventing Undesired Minority Carrier Injection. Advanced Functional Materials, 2021, 31, 2100202.	7.8	21
298	A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis. Science China Materials, 2021, 64, 2212-2220.	3.5	21
299	A novel orange-red thermally activated delayed fluorescence emitter with high molecular rigidity and planarity realizing 32.5% external quantum efficiency in organic light-emitting diodes. Materials Horizons, 2022, 9, 2425-2432.	6.4	21
300	The effect of functional group substitution on the photoluminescence and electroluminescence of pyrazoline derivatives. Synthetic Metals, 2000, 114, 115-117.	2.1	20
301	Nitrogen-doped silicon nanowires: Synthesis and their blue cathodoluminescence and photoluminescence. Applied Physics Letters, 2009, 95, .	1.5	20
302	A new multifunctional fluorenyl carbazole hybrid for high performance deep blue fluorescence, orange phosphorescent host and fluorescence/phosphorescence white OLEDs. Dyes and Pigments, 2013, 97, 273-277.	2.0	20
303	High Voltage, Transition Metal Complex Enables Efficient Electrochemical Energy Storage in a Liâ€lon Battery Full Cell. Advanced Functional Materials, 2017, 27, 1604299.	7.8	20
304	A skin-like stretchable colorimetric temperature sensor. Science China Materials, 2018, 61, 969-976.	3.5	20
305	Fast deposition of an ultrathin, highly crystalline organic semiconductor film for high-performance transistors. Nanoscale Horizons, 2020, 5, 1096-1105.	4.1	20
306	Improving Efficiency of Red Thermally Activated Delayed Fluorescence Emitter by Introducing <scp>Quasiâ€Degenerate</scp> Orbital Distribution. Chinese Journal of Chemistry, 2022, 40, 911-917.	2.6	20

#	Article	IF	Citations
307	Optimizing Intermolecular Interactions and Energy Level Alignments of Red TADF Emitters for Highâ€Performance Organic Lightâ€Emitting Diodes. Small, 2022, 18, e2201548.	5.2	20
308	Electrogenerated chemiluminescence. 75. Electrochemistry and ECL of 9,10-bis(2-naphthyl)anthracene. Journal of Electroanalytical Chemistry, 2004, 566, 409-413.	1.9	19
309	The diameter-dependent photoelectrochemical performance of silicon nanowires. Chemical Communications, 2016, 52, 1369-1372.	2.2	19
310	Application of Silicon Oxide on High Efficiency Monocrystalline Silicon PERC Solar Cells. Energies, 2019, 12, 1168.	1.6	19
311	Large-scale fabrication and characterization of Cd-doped ZnO nanocantilever arrays. Micron, 2005, 36, 55-59.	1.1	18
312	Fabrication and characterization of Zn-doped CdTe nanowires. Applied Physics A: Materials Science and Processing, 2005, 81, 1647-1650.	1.1	18
313	Morphology-controllable preparation of 1D poly(vinyl pyrrolidone) nanostructured arrays. Nanotechnology, 2005, 16, 433-436.	1.3	18
314	Efficient and stable single-dopant white OLEDs based on 9,10-bis (2-naphthyl) anthracene. Journal of Luminescence, 2006, 121, 568-572.	1.5	18
315	Highly efficient blue organic electrophosphorescence devices using a trifluorine-replaced iridium complex. Organic Electronics, 2011, 12, 2061-2064.	1.4	18
316	Largeâ€Scale Controllable Patterning Growth of Aligned Organic Nanowires through Evaporationâ€Induced Selfâ€Assembly. Chemistry - A European Journal, 2012, 18, 975-980.	1.7	18
317	A stable high performance Li–S battery with a polysulfide ion blocking layer. Journal of Materials Chemistry A, 2014, 2, 5602.	5.2	18
318	Large-Scale Assembly of Organic Micro/Nanocrystals into Highly Ordered Patterns and Their Applications for Strain Sensors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11018-11024.	4.0	18
319	Air Heating Approach for Multilayer Etching and Roll-to-Roll Transfer of Silicon Nanowire Arrays as SERS Substrates for High Sensitivity Molecule Detection. ACS Applied Materials & Samp; Interfaces, 2014, 6, 977-984.	4.0	18
320	Precise Patterning of Organic Single Crystals via Capillaryâ€Assisted Alternatingâ€Electric Field. Small, 2017, 13, 1604261.	5.2	18
321	Thermal Transport Engineering in Graphdiyne and Graphdiyne Nanoribbons. ACS Omega, 2019, 4, 4147-4152.	1.6	18
322	Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries. ACS Energy Letters, 2022, 7, 1274-1283.	8.8	18
323	Highly luminescent and photostable core–shell dye nanoparticles for high efficiency bioimaging. Chemical Communications, 2014, 50, 737-739.	2.2	17
324	A mechanistic study of silica-etching by hot water. Physical Chemistry Chemical Physics, 2018, 20, 1440-1446.	1.3	17

#	Article	IF	Citations
325	Intermolecular Chargeâ€Transfer Transition Emitter Showing Thermally Activated Delayed Fluorescence for Efficient Nonâ€Doped OLEDs. Angewandte Chemie, 2018, 130, 9624-9628.	1.6	17
326	Precise Positioning of Organic Semiconductor Single Crystals with Two-Component Aligned Structure through 3D Wettability-Induced Sequential Assembly. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36205-36212.	4.0	17
327	Flame-retarding battery cathode materials based on reversible multi-electron redox chemistry of phenothiazine-based polymer. Journal of Energy Chemistry, 2020, 47, 256-262.	7.1	17
328	A Threeâ€Dimensional Confined Crystallization Strategy Toward Controllable Growth of Highâ€Quality and Largeâ€Area Perovskite Single Crystals. Advanced Functional Materials, 2022, 32, .	7.8	17
329	Z-scan measurement of a novel amorphous molecular material. Optics Communications, 2001, 191, 427-433.	1.0	16
330	Highly branched organic microcrystals via self-organization and growth kinetics manipulation. CrystEngComm, 2012, 14, 8124.	1.3	16
331	Carrier-free, functionalized pure drug nanorods as a novel cancer-targeted drug delivery platform. Nanotechnology, 2013, 24, 015103.	1.3	16
332	Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes. Optical Materials, 2016, 58, 260-267.	1.7	16
333	CdS Nanoribbonâ€Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping. Advanced Functional Materials, 2018, 28, 1706577.	7.8	16
334	Photodetectors based on small-molecule organic semiconductor crystals. Chinese Physics B, 2019, 28, 038102.	0.7	16
335	Thermal transport in amorphous small organic materials: a mechanistic study. Physical Chemistry Chemical Physics, 2020, 22, 3058-3065.	1.3	16
336	Origin of thermally activated delayed fluorescence in a donor–acceptor type emitter with an optimized nearly planar geometry. Journal of Materials Chemistry C, 2020, 8, 13263-13269.	2.7	16
337	Synergistic impeding of phonon transport through resonances and screw dislocations. Physical Review B, 2021, 103, .	1.1	16
338	Highâ€Performance Nondoped Organic Lightâ€Emitting Diode Based on a Thermally Activated Delayed Fluorescence Emitter with 1D Intermolecular Hydrogen Bonding Interactions. Advanced Optical Materials, 2021, 9, 2100461.	3.6	16
339	Fluoride-selective Colorimetric Sensors Based on Hydrazone Functionality. Chemistry Letters, 2004, 33, 850-851.	0.7	15
340	Preparation and photoluminescence of Sc-doped ZnO nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25, 587-591.	1.3	15
341	Controlled Synthesis of Oriented 1D ZnO Nanostructures on Transparent Conductive Substrates. Journal of Nanoscience and Nanotechnology, 2009, 9, 1832-1838.	0.9	15
342	Si/poly-CuTAPC coaxial core–shell nanowire array as enhanced visible-light photocatalyst for hydrogen production. Chemical Communications, 2012, 48, 2815.	2.2	15

#	Article	lF	CITATIONS
343	A reticuloendothelial system-stealthy dye–albumin nanocomplex as a highly biocompatible and highly luminescent nanoprobe for targeted in vivo tumor imaging. RSC Advances, 2014, 4, 6120.	1.7	15
344	Ternary organic solar cells with a phase-modulated surface distribution <i>via</i> the addition of a small molecular luminescent dye to obtain a high efficiency over 10.5%. Nanoscale, 2018, 10, 16455-16467.	2.8	15
345	Dibenzofuran/dibenzothiophene as the secondary electron-donors for highly efficient blue thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2019, 7, 4475-4483.	2.7	15
346	Theoretical Studies of Bipolar Transport in CnBTBT–FmTCNQ Donor–Acceptor Cocrystals. Journal of Physical Chemistry Letters, 2020, 11, 359-365.	2.1	15
347	6,12-Dihydro-6,12-diboradibenzo[def,mno]chrysene: A Doubly Boron-Doped Polycyclic Aromatic Hydrocarbon for Organic Light Emitting Diodes by a One-Pot Synthesis. Organic Letters, 2020, 22, 7942-7946.	2.4	15
348	Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires. Materials Research Bulletin, 2006, 41, 340-346.	2.7	14
349	Smart Nanorods for Highly Effective Cancer Theranostic Applications. Advanced Healthcare Materials, 2014, 3, 906-915.	3.9	14
350	Hydrogenâ€Terminated Si Nanowires as Labelâ€Free Colorimetric Sensors in the Ultrasensitive and Highly Selective Detection of Fluoride Anions in Pure Water Phase. Advanced Functional Materials, 2015, 25, 1506-1510.	7.8	14
351	A Stable Flexible Silicon Nanowire Array as Anode for High-Performance Lithium-ion Batteries. Electrochimica Acta, 2015, 176, 321-326.	2.6	14
352	Doxorubicin@Bcl-2 siRNA Core@Shell Nanoparticles for Synergistic Anticancer Chemotherapy. ACS Applied Bio Materials, 2018, 1, 289-297.	2.3	14
353	Thermally activated delayed fluorescence emitters with low concentration sensitivity for highly efficient organic light emitting devices. Journal of Materials Chemistry C, 2019, 7, 8923-8928.	2.7	14
354	The Impact of Thermal Treatment on Light-Induced Degradation of Multicrystalline Silicon PERC Solar Cell. Energies, 2019, 12, 416.	1.6	14
355	Solution-Doped Polysilicon Passivating Contacts for Silicon Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8455-8460.	4.0	14
356	Conformational isomerization: A novel mechanism to realize the AlEâ€TADF behaviors. Aggregate, 2023, 4,	5.2	14
357	The novel bicrystalline GaN nanorods. Materials Letters, 2004, 58, 3578-3581.	1.3	13
358	High-efficiency endothermic energy transfer in polymeric light-emitting devices based on cyclometalated Ir complexes. Applied Physics Letters, 2008, 92, 023301.	1.5	13
359	Crystal Structure Origin for Shape-Dependent Emission of 2,5,8,11-Tetra- <i>tert</i> -butylperylene Micro-/Nanocrystals. Crystal Growth and Design, 2011, 11, 3677-3680.	1.4	13
360	Highly efficient thermally activated delayed fluorescence emitters based on novel Indolo[2,3-b]acridine electron-donor. Organic Electronics, 2018, 57, 327-334.	1.4	13

#	Article	IF	Citations
361	Green solution-processed thermally activated delayed fluorescence OLEDs with improved performance by using interfacial exciplex host. Organic Electronics, 2019, 73, 36-42.	1.4	13
362	Theoretical studies on full-color thermally activated delayed fluorescence molecules. Journal of Materials Chemistry C, 2020, 8, 5839-5846.	2.7	13
363	Nonconjugated Triptycene-Spaced Donor–Acceptor-Type Emitters Showing Thermally Activated Delayed Fluorescence via Both Intra- and Intermolecular Charge-Transfer Transitions. ACS Applied Materials & Delayed Fluorescence, 2021, 13, 25193-25201.	4.0	13
364	Singleâ€Crystalline Silicon Frameworks: A New Platform for Transparent Flexible Optoelectronics. Advanced Materials, 2021, 33, e2008171.	11.1	13
365	Space charge induced electroluminescence spectra shift in organic light-emitting diodes. Journal of Applied Physics, 2012, 112, 014513.	1.1	13
366	A facile strategy for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 433, 134423.	6.6	13
367	High-Luminance Microsized CH ₃ NH ₃ PbBr ₃ Single-Crystal-Based Light-Emitting Diodes via a Facile Liquid-Insulator Bridging Route. ACS Nano, 2022, 16, 6394-6403.	7.3	13
368	High-performance organic red-light-emitting device based on DCJTB and a new host material. Journal of Luminescence, 2010, 130, 70-73.	1.5	12
369	The aspect ratio effect of drug nanocrystals on cellular internalization efficiency, uptake mechanisms, and in vitro and in vivo anticancer efficiencies. Nanoscale, 2015, 7, 3588-3593.	2.8	12
370	π–π stacking induced high current density and improved efficiency in ternary organic solar cells. Nanoscale, 2018, 10, 9971-9980.	2.8	12
371	Orbital-dependent redox potential regulation of quinone derivatives for electrical energy storage. RSC Advances, 2019, 9, 5164-5173.	1.7	12
372	Forming submicron in micron texture on the diamondâ€wireâ€sawn mcâ€Si wafer by introducing artificial defects. Progress in Photovoltaics: Research and Applications, 2020, 28, 788-797.	4.4	12
373	Self-crosslinked herringbone dihydrophenazine derivatives for high performance organic batteries. Composites Communications, 2021, 28, 100947.	3.3	12
374	Multiplying the efficiency of red thermally activated delayed fluorescence emitter by introducing intramolecular hydrogen bond. Chemical Engineering Journal, 2022, 448, 137717.	6.6	12
375	The Size-Dependence of 1,5-Diphenyl-3-naphthyl-2-pyrazoline Nanocrystals. Journal of Colloid and Interface Science, 1999, 220, 177-180.	5.0	11
376	Colorimetric detection and differentiation of fluoride and dihydrogenphosphate anions. Sensors and Actuators B: Chemical, 2005, 106, 343-346.	4.0	11
377	A facile route to fabrication of inorganic–small organic molecule cable-like nanocomposite arrays. Chemical Communications, 2005, , 4202.	2.2	11
378	Tuning the electronic transport anisotropy in \hat{l}_\pm -phase phosphorene through superlattice design. Physical Review B, 2018, 97, .	1.1	11

#	Article	IF	CITATIONS
379	One-step growth of large-area silicon nanowire fabrics for high-performance multifunctional wearable sensors. Nano Research, 2019, 12, 2723-2728.	5.8	11
380	Charge-transfer transition regulation of thermally activated delayed fluorescence emitters by changing the valence of sulfur atoms. Journal of Materials Chemistry C, 2020, 8, 17457-17463.	2.7	11
381	Controlled 2D growth of organic semiconductor crystals by suppressing "coffee-ring―effect. Nano Research, 2020, 13, 2478-2484.	5.8	11
382	Tailoring the Voltage Gap of Organic Battery Materials Based on a Multiâ€Electron Redox Chemistry. ChemElectroChem, 2020, 7, 1781-1788.	1.7	11
383	Multicore Ferrocene Derivative as a Highly Soluble Cathode Material for Nonaqueous Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 855-861.	2.5	11
384	Phonon resonant effect in silicon membranes with different crystallographic orientations. International Journal of Heat and Mass Transfer, 2022, 183, 122144.	2.5	11
385	Template fabrication of SiO2 nanotubes. Applied Physics Letters, 2007, 90, 103114.	1.5	10
386	Surficial Marangoni Flowâ€Induced Growth of Ultrathin 2D Molecular Crystals on Target Substrates. Advanced Materials Interfaces, 2020, 7, 1901753.	1.9	10
387	Chiral thermally activated delayed fluorescence emitters with dual conformations based on a pair of enantiomeric donors containing asymmetric carbons. Dyes and Pigments, 2020, 178, 108336.	2.0	10
388	Precise patterning of single crystal arrays of organic semiconductors by a patterned microchannel dip-coating method for organic field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 5174-5181.	2.7	10
389	Ultraâ€Sensitive and Lowâ€Powerâ€Consumption Organic Phototransistor Enables Nighttime Illumination Perception for Bionic Mesopic Vision. Laser and Photonics Reviews, 2022, 16, .	4.4	10
390	Structural and electronic properties of 9R diamond polytype. Solid State Communications, 2005, 136, 41-44.	0.9	9
391	Oxide Shell Assisted Vaporâ^'Liquidâ^'Solid Growth of Periodic Composite NanowiresA Case of Si/Sn. Chemistry of Materials, 2007, 19, 5598-5601.	3.2	9
392	Efficient Hole-Blocker with Electron Transporting Property and Its Applications in Blue Organic Light-Emitting Devices. Journal of Physical Chemistry C, 2009, 113, 16792-16795.	1.5	9
393	Waferâ€Scale Growth of Aligned C ₆₀ Single Crystals via Solutionâ€Phase Epitaxy for Highâ€Performance Transistors. Advanced Functional Materials, 2021, 31, 2105459.	7.8	9
394	Controlling the conjugation extension inside acceptors for enhancing reverse intersystem crossing of red thermally activated delayed fluorescence emitters. Chemical Engineering Journal, 2022, 440, 135775.	6.6	9
395	A New Series of Blue Emitting Pyrazine Derivatives for Organic Electroluminescence Devices. Physica Status Solidi A, 2001, 185, 203-211.	1.7	8
396	Efficient and stable non-doped deep-blue organic light emitting diode based on an anthracene derivative. Science China Chemistry, 2011, 54, 666-670.	4.2	8

#	Article	IF	CITATIONS
397	Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application. Applied Physics Letters, 2013, 102, 163906.	1.5	8
398	An Inherent Multifunctional Sellotape Substrate for Highâ€Performance Flexible and Wearable Organic Singleâ€Crystal Nanowire Arrayâ€Based Transistors. Advanced Electronic Materials, 2016, 2, 1600129.	2.6	8
399	One-step fabrication of CdS:Mo–CdMoO4core–shell nanoribbons for nonvolatile memory devices with high resistance switching. Journal of Materials Chemistry C, 2017, 5, 6156-6162.	2.7	8
400	Dispersing hydrophilic nanoparticles in nonaqueous solvents with superior long-term stability. RSC Advances, 2017, 7, 25535-25541.	1.7	8
401	Novel brominated compounds using in binary additives based organic solar cells to achieve high efficiency over 10.3%. Organic Electronics, 2017, 50, 507-514.	1.4	8
402	Highly Efficient Thermally Activated Delayed Fluorescence Emitter Developed by Replacing Carbazole With 1,3,6,8-Tetramethyl-Carbazole. Frontiers in Chemistry, 2019, 7, 17.	1.8	8
403	Novel triazine derivatives with deep LUMO energy levels as the electron-accepting components of exciplexes. Journal of Materials Chemistry C, 2021, 9, 939-946.	2.7	8
404	Ambient instability of organic field-effect transistors and their improvement strategies. Journal Physics D: Applied Physics, 2022, 55, 053001.	1.3	8
405	Characterizing the Conformational Distribution in an Amorphous Film of an Organic Emitter and Its Application in a "Selfâ€Doping―Organic Lightâ€Emitting Diode. Angewandte Chemie, 2021, 133, 26082-260	08 7 6	8
406	Facile synthesis of near-infrared bodipy by donor engineering for <i>in vivo</i> tumor targeted dual-modal imaging. Journal of Materials Chemistry B, 2021, 9, 9308-9315.	2.9	8
407	Facile formation of microscale hollow superstructures made of organic nanocrystals and their application as a humidity sensor. CrystEngComm, 2012, 14, 819-823.	1.3	7
408	Facile One-Step Fabrication of Ordered Ultra-Long Organic Microwires Film for Flexible Near-Infrared Photodetectors. Journal of Nanoscience and Nanotechnology, 2015, 15, 4450-4456.	0.9	7
409	Quantitative analysis of photons' decaying pathways in Si nanowire arrays for highly efficient photoelectrochemical solar hydrogen generation. Chemical Communications, 2015, 51, 3383-3386.	2.2	7
410	Fine-tuning the emissions of highly efficient thermally activated delayed fluorescence emitters with different linking positions of electron-deficient substituent groups. Dyes and Pigments, 2017, 143, 62-70.	2.0	7
411	Tuning Electrical and Raman Scattering Properties of Cadmium Sulfide Nanoribbons via Surface Charge Transfer Doping. Journal of Physical Chemistry C, 2019, 123, 15794-15801.	1.5	7
412	An â€~ice-melting' kinetic control strategy for highly photocatalytic organic nanocrystals. Journal of Materials Chemistry A, 2020, 8, 25275-25282.	5.2	7
413	Applying intermolecular hydrogen bonding to exploit TADF emitters for high-performance orange-red non-doped OLEDs. Journal of Materials Chemistry C, 2022, 10, 4717-4722.	2.7	7
414	Wafer-Scale Fabrication of Silicon Nanocones via Controlling Catalyst Evolution in All-Wet Metal-Assisted Chemical Etching. ACS Omega, 2022, 7, 2234-2243.	1.6	7

#	Article	IF	CITATIONS
415	Using fullerene fragments as acceptors to construct thermally activated delayed fluorescence emitters for high-efficiency organic light-emitting diodes. Chemical Engineering Journal, 2022, 435, 134731.	6.6	7
416	Thermally activated delayed fluorescence materials for nondoped organic lightâ€emitting diodes with nearly 100% exciton harvest. SmartMat, 2023, 4, .	6.4	7
417	Cathodoluminescence and photoluminescence of individual silicon nanowires. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1512-1517.	0.8	6
418	Amorphous silicon as electron transport layer for colloidal semiconductor nanocrystals light emitting diode. Applied Physics Letters, 2009, 95, 233502.	1.5	6
419	Self-assembly of ZnO/SiO2 hierarchical nanostructures array on metal substrate. Chemical Communications, 2009, , 5916.	2.2	6
420	Facile and green fabrication of organic single-crystal hollow micro/nanostructures. Nanotechnology, 2011, 22, 285606.	1.3	6
421	Controlled Formation of Ni(DMG) ₂ Microrods/Tubes by Manipulating the Kinetics of Chemical Reactions and Their Application in Naked-Eye Sensors. Journal of Nanoscience and Nanotechnology, 2012, 12, 6592-6595.	0.9	6
422	Large-scale assembly of semiconductor nanowires into desired patterns for sensor applications. New Journal of Chemistry, 2013, 37, 1776.	1.4	6
423	Constructing a novel single-layer white organic light-emitting device through a new sky-blue fluorescent bipolar host. Organic Electronics, 2014, 15, 3514-3520.	1.4	6
424	All-in-One, Solid-State, Solar-Powered Electrochemical Cell. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57182-57189.	4.0	6
425	Pyridine-substituted triazine as an acceptor for thermally activated delayed fluorescence emitters showing high efficiency and low roll-off in organic light-emitting diodes. Materials Today Energy, 2021, 20, 100581.	2.5	6
426	An efficient chloride-selective fluorescent chemosensor based on 2,9-bis($4\hat{a}\in^2$ -hydroxyphenyl)phenanthroline Cu(II) complex. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 281-286.	2.0	5
427	ï€â€"Ï€ INTERACTION IN BENZENE DIMER STUDIED USING DENSITY FUNCTIONAL THEORY AUGMENTED WITH AN EMPIRICAL DISPERSION TERM. Journal of Theoretical and Computational Chemistry, 2010, 09, 109-123.	1.8	5
428	Synthesis of Hollow Silica Spheres with Hierarchical Shell Structure by the Dual Action of Liquid Indium Microbeads in Vapor–Liquid–Solid Growth. Langmuir, 2011, 27, 7996-7999.	1.6	5
429	A silicon/zinc 2,9,16,23-tetraaminophthalocyanine coaxial core–shell nanowire array as an efficient solar hydrogen generation photocatalyst. Nanotechnology, 2012, 23, 175401.	1.3	5
430	Non-ionic surfactant-novel agents to realize high efficiency non-fullerene opaque and semitransparent organic solar cells with Enhanced Stability. Organic Electronics, 2018, 62, 195-202.	1.4	5
431	Metal-catalyzed chemical etching using DIO3 as a hole injection agent for efficient submicron-textured multicrystalline silicon solar cells. Solar Energy Materials and Solar Cells, 2021, 227, 111104.	3.0	5
432	Novel donor-spacer-acceptor compound as the multifunctional component of exciplexes for efficient organic light-emitting diodes. Science China Materials, 2022, 65, 460-468.	3.5	5

#	Article	IF	Citations
433	Light management of PERC solar cell with the front and back dielectric multilayers. Progress in Photovoltaics: Research and Applications, 0, , .	4.4	5
434	Insights into the Origins of Minority Carrier Traps in Solutionâ€Processed Organic Semiconductors and Their Effects on Transistor Photostability. Advanced Electronic Materials, 2022, 8, .	2.6	5
435	A novel visible light photo-induced acid-generation system. Journal of Applied Polymer Science, 2002, 84, 909-915.	1.3	4
436	Large-scale silica nanowire array grown on liquid tin and its applications as Hg (II) scavenger. Applied Physics Letters, 2008, 93, 023119.	1.5	4
437	Electron Transport Suppression from Tipâ^'Ï \in State Interaction on Si(100)-2 × 1 Surfaces. Journal of Chemical Theory and Computation, 2011, 7, 707-712.	2.3	4
438	Lowâ€Cost Solar Cell Based on a Composite of Silicon Nanowires and a Highly Conductive Nonphotoactive Polymer. Chemistry - A European Journal, 2013, 19, 17273-17276.	1.7	4
439	Patterned growth of single-crystal 3, 4, 9, 10-perylenetetracarboxylic dianhydride nanowire arrays for field-emission and optoelectronic devices. Nanotechnology, 2015, 26, 295302.	1.3	4
440	A facile method for fabrication of highly integrated organic field-effect transistors on photoresist-unwettable insulators with remarkable stability. Organic Electronics, 2016, 34, 104-110.	1.4	4
441	Bismuth-catalyzed and doped p-type ZnSe nanowires and their temperature-dependent charge transport properties. Journal of Materials Chemistry C, 2016, 4, 857-862.	2.7	4
442	The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study. Physical Chemistry Chemical Physics, 2016, 18, 6406-6410.	1.3	4
443	Anomalous effect of the aging degree on the ionic permeability of silica shells. RSC Advances, 2018, 8, 38499-38505.	1.7	4
444	Novel star-shaped yellow thermally activated delayed fluorescence emitter realizing over 10% external quantum efficiency at high luminance of 30000†cd†mâ°'2 in OLED. Organic Electronics, 2018, 62, 220-226.	1.4	4
445	Improving performance of thermally activated delayed fluorescence emitter by extending its LUMO distribution. Science China Materials, 2019, 62, 719-728.	3.5	4
446	Molecular deposition condition dependent structural and charge transport properties of CBP films. Computational Materials Science, 2020, 182, 109785.	1.4	4
447	Forcing dimethylacridine crooking to improve the efficiency of orange-red thermally activated delayed fluorescent emitters. Journal of Materials Chemistry C, 2020, 8, 10416-10421.	2.7	4
448	A phototransistor with visual adaptation. Nature Electronics, 2021, 4, 460-461.	13.1	4
449	Reddish Organic Light Electroluminescent Device with DPP Emitting Layer. Physica Status Solidi A, 1999, 173, 491-494.	1.7	3
450	Transmission Electron Microscopy Investigation of Sb-Doped ZnO Nanoribbons and Zn ₇ Sb ₂ O ₁₂ Branched ZnO Nanoribbon Structure. Journal of Nanoscience and Nanotechnology, 2006, 6, 2200-2203.	0.9	3

#	Article	IF	CITATIONS
451	UV irradiation induced switching of surface charge polarity on pyrene modified Si nanowires. Applied Physics Letters, 2011, 98, 253101.	1.5	3
452	Impact of compound doping on hole and electron balance in p-i-n organic light-emitting diodes. AIP Advances, 2013, 3, 102124.	0.6	3
453	A New Multifunctional TriazineCarbazole Compound with High Triplet Energy for Highâ€Performance Blue Fluorescence, Green and Red Phosphorescent Host, and Hybrid White Organic Lightâ€Emitting Diodes. Israel Journal of Chemistry, 2014, 54, 952-957.	1.0	3
454	Si nanowire directly grown on a liquid metal substrateâ€"towards wafer scale transferable nanowire arrays with improved visible-light sterilization. Nanotechnology, 2014, 25, 145601.	1.3	3
455	Highly efficient white fluorescence/phosphorescence hybrid organic light emitting devices based on an efficient hole-transporting blue emitter. Dyes and Pigments, 2015, 115, 149-153.	2.0	3
456	Super-Hydrophobic Silicon/Silica Hierarchical Structure Film. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2011, 27, 2233-2238.	2.2	3
457	Efficient and stable single-emitting-layer white organic light-emitting diodes by employing all thermally activated delayed fluorescence emitters. Organic Electronics, 2022, 101, 106415.	1.4	3
458	Patterning of organic semiconductor crystal arrays via microchannel-assisted inkjet printing for organic field-effect transistors. JPhys Materials, 2022, 5, 035001.	1.8	3
459	Solvatochromic effect of a fluorescence probe used to study the environmental properties of organic montmorillonite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 279, 233-237.	2.3	2
460	Inside Cover: Polyhedral Organic Microcrystals: From Cubes to Rhombic Dodecahedra (Angew. Chem.) Tj ETQq0 (0 0 rgBT /0 7.2	Overlock 10 T
461	A new family of solution-processible tris-(pinene-phenylpyridine) iridium(III) derivatives for polymer light-emitting diodes. Synthetic Metals, 2009, 159, 689-694.	2.1	2
462	Electronic structure and optical properties of 2,5,8,11-tetra-tert-butylperylene polyhedral crystals from x-ray absorption near-edge structure and x-ray excited optical luminescence studies. Applied Physics Letters, 2011, 98, 243106.	1.5	2
463	White OLEDs: Management of Singlet and Triplet Excitons in a Single Emission Layer: A Simple Approach for a Highâ€Efficiency Fluorescence/Phosphorescence Hybrid White Organic Lightâ€Emitting Device (Adv.) Tj ETC	Qq 1 1.110.78	34 3 14 rgBT
464	Highly efficient and stable Si nanowires array embedded into transparent polymer for visible light photoelectrochemical cell. Nanotechnology, 2014, 25, 265401.	1.3	2
465	OLEDs: Novel Strategy to Develop Exciplex Emitters for Highâ€Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials (Adv. Funct. Mater. 12/2016). Advanced Functional Materials, 2016, 26, 2036-2036.	7.8	2
466	Surface engineering of organic nanoparticles for highly improved bioimaging. Colloids and Surfaces B: Biointerfaces, 2017, 159, 596-604.	2.5	2
467	Atomic-Scale Interface Engineering for Constructing p-CuPc/n-CdS Core–Shell Heterojunctions toward Light-Harvesting Application. ACS Applied Energy Materials, 2020, 3, 8765-8773.	2.5	2
468	New electron-donating segment to develop thermally activated delayed fluorescence emitters for efficient solution-processed non-doped organic light-emitting diodes. Chinese Chemical Letters, 2022, 33, 1110-1115.	4.8	2

#	Article	IF	CITATIONS
469	High-performance red and white organic light-emitting diodes based on a novel red thermally activated delayed fluorescence emitter in an exciplex matrix. Materials Today Energy, 2021, 21, 100818.	2.5	2
470	Selectively electroless deposited Ag nanoparticles embedded in the dielectric layer to tune the rear color of bifacial solar cells. Solar Energy Materials and Solar Cells, 2021, 232, 111358.	3.0	2
471	A STUDY ON THE INTERACTION OF SODIUM POLYSTYRENE SULFONATE WITH CATIONIC SURFACTANTS AND THE FORMATION OF NANO-AGGREGATES. Acta Polymerica Sinica, 2006, 006, 76-81.	0.0	2
472	Photo-physical Behavior of Modified <i>β</i> -Cyclodextrin by Dimethylamino Chalcone in Different Solvents. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2002, 18, 495-499.	2.2	2
473	Emission Behavior of Non-Planar Intra-Molecular Conjugated Charge Transfer Compounds. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2003, 19, 670-674.	2.2	2
474	Thermally activated delayed fluorescence exciplexes in organic light-emitting diodes., 2022,, 353-426.		2
475	A perspective on ultralong silicon nanowires for flexible sensors. Applied Physics Letters, 2022, 120, 130501.	1.5	2
476	Grafting Branches and Diameter Adjustment to Nanotubes. Chemistry of Materials, 2008, 20, 3740-3744.	3.2	1
477	First-principles study of silicon bulk and nanowire (111) surfaces terminated with trihydrides: Symmetric, rotated, and tilted. Physical Review B, 2009, 80, .	1.1	1
478	Controllable Synthesis of 6H-1,4-Diazepine-2,3-Dicarbonitrile Nanocrystals and Their Optical Properties. Journal of Nanoscience and Nanotechnology, 2012, 12, 7405-7408.	0.9	1
479	Understanding Non-Twinning Zigzag Nanowire Formation for New Nanoscale Devices. ACS Applied Nano Materials, 2019, 2, 673-677.	2.4	1
480	Solution-Processable Carbon and Graphene Quantum Dots Photodetectors. Lecture Notes in Nanoscale Science and Technology, 2021, , 157-214.	0.4	1
481	Novel D-D′-A structure thermally activated delayed fluorescence emitters realizing over 20% external quantum efficiencies in both evaporation- and solution-processed organic light-emitting diodes. Organic Electronics, 2021, 99, 106312.	1.4	1
482	Blocking Energy-Loss Pathways for Efficient All-Fluorescent Solution-processed Organic Light-emitting Diodes by Introducing Polymer Additive. Journal of Physics: Conference Series, 2022, 2174, 012030.	0.3	1
483	Shear-induced alignment of low-aspect-ratio nanorods for modulations of multiple optical properties. Journal of Materials Chemistry C, 2022, 10, 9478-9483.	2.7	1
484	A specific fluorescent chemosensor for copper (II) cation recognition*. Progress in Natural Science: Materials International, 2003, 13, 201-205.	1.8	0
485	A Novel Colorimetric and Fluorescent Anion Chemosensor Based on the Flavone Quasi-Crown Ether—Metal Complex ChemInform, 2004, 35, no.	0.1	0
486	AN ITERATION SCHEME FOR CALCULATING TRANSPORT PROPERTIES OF MOLECULAR SYSTEMS. Journal of Theoretical and Computational Chemistry, 2007, 06, 975-984.	1.8	0

#	Article	IF	CITATIONS
487	Innentitelbild: Polyhedral Organic Microcrystals: From Cubes to Rhombic Dodecahedra (Angew. Chem.) Tj ETQq1	l 0.78431 1.6	4 _d gBT /Ove
488	Fabrication and Structure Characterization of Te Butterfly Nanostructures. Journal of Nanoscience and Nanotechnology, 2011, 11, 11037-11040.	0.9	0
489	Photocatalysis: Iodineâ€Dopedâ€Poly(3,4â€Ethylenedioxythiophene)â€Modified Si Nanowire 1D Coreâ€Shell Arrays as an Efficient Photocatalyst for Solar Hydrogen Generation (Adv. Mater. 46/2012). Advanced Materials, 2012, 24, 6250-6250.	11.1	O
490	Organic Light-Emitting Devices: Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7078-7078.	11.1	0
491	Colorimetric Sensors: Hydrogenâ€Terminated Si Nanowires as Labelâ€Free Colorimetric Sensors in the Ultrasensitive and Highly Selective Detection of Fluoride Anions in Pure Water Phase (Adv. Funct.) Tj ETQq1 1 0.76	3 43 814 rgB	TdOverlock
492	Exciplex Emitters: Prediction and Design of Efficient Exciplex Emitters for Highâ€Efficiency, Thermally Activated Delayedâ€Fluorescence Organic Lightâ€Emitting Diodes (Adv. Mater. 14/2015). Advanced Materials, 2015, 27, 2377-2377.	11,1	О
493	The Preparation of Nano-sized Silica Gel Suspension and the Recognition of Transition Metal Cations. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 313-317.	2.2	O
494	Study on the Steady State Photo-physical Behaviors of Oxonol Dye. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2004, 20, 350-354.	2.2	0
495	Nano-wire Preparation of Small Molecular Organic Compound in Solution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2005, 21, 106-109.	2.2	O
496	Effect of Sodium Dodecyl Sulfate on the Behavior of PEO-PPO-PEO Triblock Copolymer in Aqueous Solution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 1999, 15, 390-397.	2,2	0
497	Layered double hydroxides-silver-chlorin e6 nanocomposite for photo-chemo combination therapy to efficiently combat both Gram-positive and Gram-negative bacteria. Materials Today Communications, 2022, 30, 103101.	0.9	О