William W Hauswirth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3949020/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	XIAP gene therapy effects on retinal ganglion cell structure and function in a mouse model of glaucoma. Gene Therapy, 2022, 29, 147-156.	2.3	15
2	Neuroprotective Gene Therapy by Overexpression of the Transcription Factor MAX in Rat Models of Glaucomatous Neurodegeneration. , 2022, 63, 5.		11
3	Gene therapy restores mitochondrial function and protects retinal ganglion cells in optic neuropathy induced by a mito-targeted mutant ND1 gene. Gene Therapy, 2022, 29, 368-378.	2.3	9
4	Optical Coherence Tomography Artifacts Are Associated With Adaptive Optics Scanning Light Ophthalmoscopy Success in Achromatopsia. Translational Vision Science and Technology, 2021, 10, 11.	1.1	8
5	Examining Whether AOSLO-Based Foveal Cone Metrics in Achromatopsia and Albinism Are Representative of Foveal Cone Structure. Translational Vision Science and Technology, 2021, 10, 22.	1.1	5
6	<i>CNGB1</i> â€related rodâ€cone dystrophy: A mutation review and update. Human Mutation, 2021, 42, 641-666.	1.1	16
7	Gene therapy reforms photoreceptor structure and restores vision in NPHP5-associated Leber congenital amaurosis. Molecular Therapy, 2021, 29, 2456-2468.	3.7	18
8	Disease mechanisms of Xâ€linked cone dystrophy caused by missense mutations in the red and green cone opsins. FASEB Journal, 2021, 35, e21927.	0.2	5
9	Effects of a combinatorial treatment with gene and cell therapy on retinal ganglion cell survival and axonal outgrowth after optic nerve injury. Gene Therapy, 2020, 27, 27-39.	2.3	15
10	Clarinâ€1 expression in adult mouse and human retina highlights a role of MÃ1⁄4ller glia in Usher syndrome. Journal of Pathology, 2020, 250, 195-204.	2.1	15
11	Long-Term Structural Outcomes of Late-Stage RPE65 Gene Therapy. Molecular Therapy, 2020, 28, 266-278.	3.7	56
12	XIAP Protects Retinal Ganglion Cells in the Mutant ND4 Mouse Model of Leber Hereditary Optic Neuropathy. , 2020, 61, 49.		7
13	Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23914-23924.	3.3	20
14	Evaluation of Photoreceptor Transduction Efficacy of Capsid-Modified Adeno-Associated Viral Vectors Following Intravitreal and Subretinal Delivery in Sheep. Human Gene Therapy, 2020, 31, 719-729.	1.4	12
15	Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells. Developmental Biology, 2020, 464, 111-123.	0.9	17
16	Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia. Current Eye Research, 2020, 45, 1257-1264.	0.7	23
17	Dual <i>ABCA4</i> -AAV Vector Treatment Reduces Pathogenic Retinal A2E Accumulation in a Mouse Model of Autosomal Recessive Stargardt Disease. Human Gene Therapy, 2019, 30, 1361-1370.	1.4	38
18	Optimal Inhibition of Choroidal Neovascularization by scAAV2 with VMD2 Promoter-driven Active Rap1a in the RPE. Scientific Reports, 2019, 9, 15732.	1.6	6

#	Article	IF	CITATIONS
19	Rescue of M-cone Function in Aged <i>Opn1mw^{â^'/â^'}</i> Mice, a Model for Late-Stage Blue Cone Monochromacy. , 2019, 60, 3644.		15
20	Retina transduction by rAAV2 after intravitreal injection: comparison between mouse and rat. Gene Therapy, 2019, 26, 479-490.	2.3	14
21	Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4496-4501.	3.3	162
22	<i>BEST1</i> gene therapy corrects a diffuse retina-wide microdetachment modulated by light exposure. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2839-E2848.	3.3	62
23	Reply. Ophthalmology, 2018, 125, e15-e16.	2.5	0
24	ELOVL4-Mediated Production of Very Long-Chain Ceramides Stabilizes Tight Junctions and Prevents Diabetes-Induced Retinal Vascular Permeability. Diabetes, 2018, 67, 769-781.	0.3	41
25	Overexpression of Type 3 lodothyronine Deiodinase Reduces Cone Death in the Leber Congenital Amaurosis Model Mice. Advances in Experimental Medicine and Biology, 2018, 1074, 125-131.	0.8	4
26	Longterm Reversal of Severe Visual Loss by Mitochondrial Gene Transfer in a Mouse Model of Leber Hereditary Optic Neuropathy. Scientific Reports, 2018, 8, 5587.	1.6	10
27	Toxicology and Pharmacology of an AAV Vector Expressing Codon-Optimized RPGR in RPGR-Deficient Rd9 Mice. Human Gene Therapy Clinical Development, 2018, 29, 188-197.	3.2	15
28	Complement C3-Targeted Gene Therapy Restricts Onset and Progression of Neurodegeneration in Chronic Mouse Glaucoma. Molecular Therapy, 2018, 26, 2379-2396.	3.7	89
29	Cone Phosphodiesterase-6γ' Subunit Augments Cone PDE6 Holoenzyme Assembly and Stability in a Mouse Model Lacking Both Rod and Cone PDE6 Catalytic Subunits. Frontiers in Molecular Neuroscience, 2018, 11, 233.	1.4	7
30	Six Years and Counting: Restoration of Photopic Retinal Function and Visual Behavior Following Gene Augmentation Therapy in a Sheep Model of <i>CNGA3</i> Achromatopsia. Human Gene Therapy, 2018, 29, 1376-1386.	1.4	23
31	Co-Expression of Wild-Type and Mutant S163R C1QTNF5 in Retinal Pigment Epithelium. Advances in Experimental Medicine and Biology, 2018, 1074, 61-66.	0.8	4
32	Mutation-independent rhodopsin gene therapy by knockdown and replacement with a single AAV vector. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8547-E8556.	3.3	114
33	Human L- and M-opsins restore M-cone function in a mouse model for human blue cone monochromacy. Molecular Vision, 2018, 24, 17-28.	1.1	12
34	Rescue of cone function in cone-only knockout mouse model with Leber congenital amaurosis phenotype. Molecular Vision, 2018, 24, 834-846.	1.1	10
35	rAAV8-733-Mediated Gene Transfer of CHIP/Stub-1 Prevents Hippocampal Neuronal Death in Experimental Brain Ischemia. Molecular Therapy, 2017, 25, 392-400.	3.7	17
36	Efficient Gene Delivery and Expression in Pancreas and Pancreatic Tumors by Capsid-Optimized AAV8 Vectors. Human Gene Therapy Methods, 2017, 28, 49-59.	2.1	17

#	Article	IF	CITATIONS
37	Rationally Engineered AAV Capsids Improve Transduction and Volumetric Spread in the CNS. Molecular Therapy - Nucleic Acids, 2017, 8, 184-197.	2.3	48
38	Optimization of Retinal Gene Therapy for X-Linked Retinitis Pigmentosa Due to RPGR Mutations. Molecular Therapy, 2017, 25, 1866-1880.	3.7	60
39	Overexpression of the X-Linked Inhibitor of Apoptosis Protects Against Retinal Degeneration in a Feline Model of Retinal Detachment. Human Gene Therapy, 2017, 28, 482-492.	1.4	12
40	Long-term photoreceptor rescue in two rodent models of retinitis pigmentosa by adeno-associated virus delivery of Stanniocalcin-1. Experimental Eye Research, 2017, 165, 175-181.	1.2	9
41	Safety and Efficacy of AAV5 Vectors Expressing Human or Canine CNGB3 in <i>CNGB3</i> -Mutant Dogs. Human Gene Therapy Clinical Development, 2017, 28, 197-207.	3.2	20
42	Modeling and Preventing Progressive Hearing Loss in Usher Syndrome III. Scientific Reports, 2017, 7, 13480.	1.6	63
43	Gene-based Therapy in a Mouse Model of Blue Cone Monochromacy. Scientific Reports, 2017, 7, 6690.	1.6	32
44	Gene Therapy for Leber Hereditary Optic Neuropathy. Ophthalmology, 2017, 124, 1621-1634.	2.5	172
45	REPEATABILITY AND LONGITUDINAL ASSESSMENT OF FOVEAL CONE STRUCTURE IN CNGB3-ASSOCIATED ACHROMATOPSIA. Retina, 2017, 37, 1956-1966.	1.0	50
46	Gene Therapy in a Large Animal Model of PDE6A-Retinitis Pigmentosa. Frontiers in Neuroscience, 2017, 11, 342.	1.4	31
47	Gene Augmentation Therapy for a Missense Substitution in the cGMP-Binding Domain of Ovine <i>CNGA3</i> Gene Restores Vision in Day-Blind Sheep. , 2017, 58, 1577.		28
48	Patients and animal models of CNGÎ ² 1-deficient retinitis pigmentosa support gene augmentation approach. Journal of Clinical Investigation, 2017, 128, 190-206.	3.9	48
49	Targeting the Nrf2 Signaling Pathway in the Retina With a Gene-Delivered Secretable and Cell-Penetrating Peptide ., 2016, 57, 372.		30
50	AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS ONE, 2016, 11, e0148874.	1.1	10
51	Small GTPases Rab8a and Rab11a Are Dispensable for Rhodopsin Transport in Mouse Photoreceptors. PLoS ONE, 2016, 11, e0161236.	1.1	28
52	Residual Foveal Cone Structure in <i>CNGB3</i> -Associated Achromatopsia. , 2016, 57, 3984.		90
53	Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia. Human Gene Therapy Clinical Development, 2016, 27, 37-48.	3.2	53
54	Maintaining ocular safety with light exposure, focusing on devices for optogenetic stimulation. Vision Research, 2016, 121, 57-71.	0.7	21

#	Article	IF	CITATIONS
55	Cone-Specific Promoters for Gene Therapy of Achromatopsia and Other Retinal Diseases. Human Gene Therapy, 2016, 27, 72-82.	1.4	59
56	Results at 2 Years after Gene Therapy for RPE65-Deficient Leber Congenital Amaurosis and Severe Early-Childhood–Onset Retinal Dystrophy. Ophthalmology, 2016, 123, 1606-1620.	2.5	184
57	Occludin S490 Phosphorylation Regulates Vascular Endothelial Growth Factor–Induced Retinal Neovascularization. American Journal of Pathology, 2016, 186, 2486-2499.	1.9	37
58	Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells. Experimental Eye Research, 2016, 151, 61-67.	1.2	0
59	Targeting iodothyronine deiodinases locally in the retina is a therapeutic strategy for retinal degeneration. FASEB Journal, 2016, 30, 4313-4325.	0.2	16
60	Highly Efficient Delivery of Adeno-Associated Viral Vectors to the Primate Retina. Human Gene Therapy, 2016, 27, 580-597.	1.4	68
61	PAX6 MiniPromoters drive restricted expression from rAAV in the adult mouse retina. Molecular Therapy - Methods and Clinical Development, 2016, 3, 16051.	1.8	17
62	Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia. Human Gene Therapy Clinical Development, 2016, 27, 27-36.	3.2	18
63	Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Human Genetics, 2016, 135, 327-343.	1.8	195
64	Safety and Biodistribution Evaluation in CNGB3-deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia. Human Gene Therapy Clinical Development, 2016, , .	3.2	1
65	Gene Therapy for MERTK-Associated Retinal Degenerations. Advances in Experimental Medicine and Biology, 2016, 854, 487-493.	0.8	31
66	Pathological Effects of Mutant C1QTNF5 (S163R) Expression in Murine Retinal Pigment Epithelium. , 2015, 56, 6971.		15
67	CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system. Frontiers in Cellular Neuroscience, 2015, 8, 438.	1.8	15
68	Gene Therapy Fully Restores Vision to the All-Cone <i>Nrl^{â^'/â^'}Gucy2e^{â^'/â^'}</i> Mouse Model of Leber Congenital Amaurosis-1. Human Gene Therapy, 2015, 26, 575-592.	1.4	38
69	Viral-mediated vision rescue of a novel AIPL1 cone-rod dystrophy model. Human Molecular Genetics, 2015, 24, 670-684.	1.4	11
70	Pseudo-Fovea Formation After Gene Therapy for RPE65-LCA. Investigative Ophthalmology and Visual Science, 2015, 56, 526-537.	3.3	39
71	Adeno-Associated Virus Type 2 and Hepatocellular Carcinoma?. Human Gene Therapy, 2015, 26, 779-781.	1.4	71
72	Kinesin family 17 (osmotic avoidance abnormalâ€3) is dispensable for photoreceptor morphology and function. FASEB Journal, 2015, 29, 4866-4880.	0.2	40

#	Article	IF	CITATIONS
73	Complex I Subunit Gene Therapy With NDUFA6 Ameliorates Neurodegeneration in EAE. Investigative Ophthalmology and Visual Science, 2015, 56, 1129-1140.	3.3	14
74	Gene Delivery of a Viral Anti-Inflammatory Protein to Combat Ocular Inflammation. Human Gene Therapy, 2015, 26, 59-68.	1.4	28
75	Stability and Safety of an AAV Vector for Treating <i>RPGR-ORF15</i> X-Linked Retinitis Pigmentosa. Human Gene Therapy, 2015, 26, 593-602.	1.4	47
76	Gene Therapy With the Caspase Activation and Recruitment Domain Reduces the Ocular Inflammatory Response. Molecular Therapy, 2015, 23, 875-884.	3.7	22
77	Improvement in vision: a new goal for treatment of hereditary retinal degenerations. Expert Opinion on Orphan Drugs, 2015, 3, 563-575.	0.5	23
78	Gene Augmentation Therapy Restores Retinal Function and Visual Behavior in a Sheep Model of CNGA3 Achromatopsia. Molecular Therapy, 2015, 23, 1423-1433.	3.7	93
79	Improvement and Decline in Vision with Gene Therapy in Childhood Blindness. New England Journal of Medicine, 2015, 372, 1920-1926.	13.9	333
80	Advancing Therapeutic Strategies for Inherited Retinal Degeneration: Recommendations From the Monaciano Symposium. Investigative Ophthalmology and Visual Science, 2015, 56, 918-931.	3.3	92
81	Targeted Gene Delivery to the Enteric Nervous System Using AAV: A Comparison Across Serotypes and Capsid Mutants. Molecular Therapy, 2015, 23, 488-500.	3.7	38
82	Vitreal delivery of AAV vectored Cnga3 restores cone function in CNGA3-/-/Nrl-/- mice, an all-cone model of CNGA3 achromatopsia. Human Molecular Genetics, 2015, 24, 3699-707.	1.4	19
83	Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5689-98.	3.3	31
84	Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5844-53.	3.3	75
85	Systemic Vascular Transduction by Capsid Mutant Adeno-Associated Virus After Intravenous Injection. Human Gene Therapy, 2015, 26, 767-776.	1.4	11
86	Gene Augmentation for X-Linked Retinitis Pigmentosa Caused by Mutations in RPGR. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a017392-a017392.	2.9	19
87	Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat. PLoS ONE, 2015, 10, e0128759.	1.1	31
88	Natural History of Cone Disease in the Murine Model of Leber Congenital Amaurosis Due to CEP290 Mutation: Determining the Timing and Expectation of Therapy. PLoS ONE, 2014, 9, e92928.	1.1	23
89	In vivo knockdown of Piccolino disrupts presynaptic ribbon morphology in mouse photoreceptor synapses. Frontiers in Cellular Neuroscience, 2014, 8, 259.	1.8	44
90	AAV-Mediated Lysophosphatidylcholine Acyltransferase 1 (Lpcat1) Gene Replacement Therapy Rescues Retinal Degeneration inrd11Mice. , 2014, 55, 1724.		21

#	Article	IF	CITATIONS
91	Genetically Targeted Binary Labeling of Retinal Neurons. Journal of Neuroscience, 2014, 34, 7845-7861.	1.7	72
92	Reprogramming Adipose Tissue-Derived Mesenchymal Stem Cells into Pluripotent Stem Cells by a Mutant Adeno-Associated Viral Vector. Human Gene Therapy Methods, 2014, 25, 72-82.	2.1	10
93	STAT3 promotes survival of mutant photoreceptors in inherited photoreceptor degeneration models. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5716-23.	3.3	31
94	Flicker cone function in normal and day blind sheep: a large animal model for human achromatopsia caused by CNGA3 mutation. Documenta Ophthalmologica, 2014, 129, 141-150.	1.0	18
95	Safety and Effects of the Vector for the Leber Hereditary Optic Neuropathy Gene Therapy Clinical Trial. JAMA Ophthalmology, 2014, 132, 409.	1.4	83
96	Dual Adeno-Associated Virus Vectors Result in Efficient <i>In Vitro</i> and <i>In Vivo</i> Expression of an Oversized Gene, <i>MYO7A</i> . Human Gene Therapy Methods, 2014, 25, 166-177.	2.1	105
97	DICER1/ <i>Alu</i> RNA dysmetabolism induces Caspase-8–mediated cell death in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16082-16087.	3.3	79
98	Numb Regulates the Polarized Delivery of Cyclic Nucleotide-Gated Ion Channels in Rod Photoreceptor Cilia. Journal of Neuroscience, 2014, 34, 13976-13987.	1.7	29
99	Retinal Gene Therapy Using Adeno-Associated Viral Vectors: Multiple Applications for a Small Virus. Human Gene Therapy, 2014, 25, 671-678.	1.4	8
100	LHON Gene Therapy Vector Prevents Visual Loss and Optic Neuropathy Induced by G11778A Mutant Mitochondrial DNA: Biodistribution and Toxicology Profile. Investigative Ophthalmology and Visual Science, 2014, 55, 7739-7753.	3.3	52
101	Gene Therapy With Mitochondrial Heat Shock Protein 70 Suppresses Visual Loss and Optic Atrophy in Experimental Autoimmune Encephalomyelitis. , 2014, 55, 5214.		21
102	Targeted CNS delivery using human MiniPromoters and demonstrated compatibility with adeno-associated viral vectors. Molecular Therapy - Methods and Clinical Development, 2014, 1, 5.	1.8	44
103	Cone Specific Promoter for Use in Gene Therapy of Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, 2014, 801, 695-701.	0.8	16
104	Gene Therapy in the Rd6 Mouse Model of Retinal Degeneration. Advances in Experimental Medicine and Biology, 2014, 801, 711-718.	0.8	11
105	Inhibitor of Apoptosis-Stimulating Protein of p53 (iASPP) Is Required for Neuronal Survival after Axonal Injury. PLoS ONE, 2014, 9, e94175.	1.1	28
106	Cone Phosphodiesterase-6Â' Restores Rod Function and Confers Distinct Physiological Properties in the Rod Phosphodiesterase-6Â-Deficient rd10 Mouse. Journal of Neuroscience, 2013, 33, 11745-11753.	1.7	22
107	Development of an anti-angiogenic therapeutic model combining scAAV2-delivered siRNAs and noninvasive photoacoustic imaging of tumor vasculature development. Cancer Letters, 2013, 332, 120-129.	3.2	26
108	Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E517-25.	3.3	401

#	Article	IF	CITATIONS
109	Imaging the response of the retina to electrical stimulation with genetically encoded calcium indicators. Journal of Neurophysiology, 2013, 109, 1979-1988.	0.9	45
110	A Comprehensive Review of Retinal Gene Therapy. Molecular Therapy, 2013, 21, 509-519.	3.7	245
111	Transient Photoreceptor Deconstruction by CNTF Enhances rAAV-Mediated Cone Functional Rescue in Late Stage CNGB3-Achromatopsia. Molecular Therapy, 2013, 21, 1131-1141.	3.7	74
112	NADH-dehydrogenase Type-2 Suppresses Irreversible Visual Loss and Neurodegeneration in the EAE Animal Model of MS. Molecular Therapy, 2013, 21, 1876-1888.	3.7	28
113	Preclinical Potency and Safety Studies of an AAV2-Mediated Gene Therapy Vector for the Treatment of <i>MERTK</i> Associated Retinitis Pigmentosa. Human Gene Therapy Clinical Development, 2013, 24, 23-28.	3.2	84
114	Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4045-4050.	3.3	239
115	Reply to Townes-Anderson: <i>RPE65</i> gene therapy does not alter the natural history of retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1706.	3.3	4
116	Targeting Photoreceptors via Intravitreal Delivery Using Novel, Capsid-Mutated AAV Vectors. PLoS ONE, 2013, 8, e62097.	1.1	143
117	RD3 gene delivery restores guanylate cyclase localization and rescues photoreceptors in the Rd3 mouse model of Leber congenital amaurosis 12. Human Molecular Genetics, 2013, 22, 3894-3905.	1.4	50
118	AAV-Mediated Gene Therapy in the Guanylate Cyclase (RetGC1/RetGC2) Double Knockout Mouse Model of Leber Congenital Amaurosis. Human Gene Therapy, 2013, 24, 189-202.	1.4	60
119	Retinal angiogenesis suppression through small molecule activation of p53. Journal of Clinical Investigation, 2013, 123, 4170-4181.	3.9	24
120	Endothelin-2-Mediated Protection of Mutant Photoreceptors in Inherited Photoreceptor Degeneration. PLoS ONE, 2013, 8, e58023.	1.1	31
121	Evaluation of Lateral Spread of Transgene Expression following Subretinal AAV–Mediated Gene Delivery in Dogs. PLoS ONE, 2013, 8, e60218.	1.1	27
122	RNAi-Mediated Gene Suppression in a GCAP1(L151F) Cone-Rod Dystrophy Mouse Model. PLoS ONE, 2013, 8, e57676.	1.1	15
123	Recombinant AAV-Mediated BEST1 Transfer to the Retinal Pigment Epithelium: Analysis of Serotype-Dependent Retinal Effects. PLoS ONE, 2013, 8, e75666.	1.1	48
124	Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. ELife, 2013, 2, e00324.	2.8	75
125	Next-generation sequencing of mitochondrial targeted AAV transfer of human ND4 in mice. Molecular Vision, 2013, 19, 1482-91.	1.1	24
126	ACE2 and Ang-(1-7) Confer Protection Against Development of Diabetic Retinopathy. Molecular Therapy, 2012, 20, 28-36.	3.7	143

#	Article	IF	CITATIONS
127	Gene Therapy for Retinitis Pigmentosa Caused by <i>MFRP</i> Mutations: Human Phenotype and Preliminary Proof of Concept. Human Gene Therapy, 2012, 23, 367-376.	1.4	35
128	Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber's hereditary optic neuropathy in a mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1238-47.	3.3	153
129	Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2132-2137.	3.3	237
130	ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13781-13786.	3.3	98
131	Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations. JAMA Ophthalmology, 2012, 130, 9.	2.6	580
132	CCN2/CTGF regulates neovessel formation <i>via</i> targeting structurally conserved cystine knot motifs in multiple angiogenic regulators. FASEB Journal, 2012, 26, 3365-3379.	0.2	54
133	Long-Term Rescue of Retinal Structure and Function by Rhodopsin RNA Replacement with a Single Adeno-Associated Viral Vector in P23H <i>RHO</i> Transgenic Mice. Human Gene Therapy, 2012, 23, 356-366.	1.4	76
134	Regenerative Medicine for the Special Senses: Restoring the Inputs. Journal of Neuroscience, 2012, 32, 14053-14057.	1.7	10
135	AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2â^'/â^'/Cx3cr1â^'/â^' mice. Neurobiology of Aging, 2012, 33, 433.e1-433.e10.	1.5	24
136	DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88. Cell, 2012, 149, 847-859.	13.5	526
137	The Human Rhodopsin Kinase Promoter in an AAV5 Vector Confers Rod- and Cone-Specific Expression in the Primate Retina. Human Gene Therapy, 2012, 23, 1101-1115.	1.4	99
138	Î ³ -Secretase Inhibition of Murine Choroidal Neovascularization Is Associated with Reduction of Superoxide and Proinflammatory Cytokines. , 2012, 53, 574.		13
139	Tyrosine-Mutant AAV8 Delivery of Human <i>MERTK</i> Provides Long-Term Retinal Preservation in RCS Rats. , 2012, 53, 1895.		48
140	Organizational motifs for ground squirrel cone bipolar cells. Journal of Comparative Neurology, 2012, 520, 2864-2887.	0.9	35
141	ER Stress Is Involved in T17M Rhodopsin-Induced Retinal Degeneration. , 2012, 53, 3792.		75
142	Functional Rescue of P23H Rhodopsin Photoreceptors by Gene Delivery. Advances in Experimental Medicine and Biology, 2012, 723, 191-197.	0.8	21
143	Gene Delivery of Wild-Type Rhodopsin Rescues Retinal Function in an Autosomal Dominant Retinitis Pigmentosa Mouse Model. Advances in Experimental Medicine and Biology, 2012, 723, 199-205.	0.8	7
144	Suppression of rds Expression by siRNA and Gene Replacement Strategies for Gene Therapy Using rAAV Vector. Advances in Experimental Medicine and Biology, 2012, 723, 215-223.	0.8	22

#	Article	IF	CITATIONS
145	AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia. PLoS ONE, 2012, 7, e35250.	1.1	105
146	Caspase Inhibition with XIAP as an Adjunct to AAV Vector Gene-Replacement Therapy: Improving Efficacy and Prolonging the Treatment Window. PLoS ONE, 2012, 7, e37197.	1.1	18
147	NADPH Oxidase in Choroidal Neovascularization. , 2012, , 307-320.		0
148	Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice. Molecular Vision, 2012, 18, 1668-83.	1.1	30
149	Towards optogenetic sensory replacement. , 2011, 2011, 3139-41.		6
150	Inhibition of Choroidal Neovascularization in a Nonhuman Primate Model by Intravitreal Administration of an AAV2 Vector Expressing a Novel Anti-VEGF Molecule. Molecular Therapy, 2011, 19, 260-265.	3.7	84
151	Long-term Retinal Function and Structure Rescue Using Capsid Mutant AAV8 Vector in the rd10 Mouse, a Model of Recessive Retinitis Pigmentosa. Molecular Therapy, 2011, 19, 234-242.	3.7	135
152	Role of Connective Tissue Growth Factor in the Retinal Vasculature during Development and Ischemia. , 2011, 52, 8701.		34
153	XIAP Therapy Increases Survival of Transplanted Rod Precursors in a Degenerating Host Retina. , 2011, 52, 1567.		47
154	Long-term Preservation of Cone Photoreceptors and Restoration of Cone Function by Gene Therapy in the Guanylate Cyclase-1 Knockout (GC1KO) Mouse. , 2011, 52, 7098.		58
155	Gene Therapy Rescues Cone Structure and Function in the 3-Month-Old <i>rd12</i> Mouse: A Model for Midcourse RPE65 Leber Congenital Amaurosis. , 2011, 52, 7.		58
156	Ab-Externo AAV-Mediated Gene Delivery to the Suprachoroidal Space Using a 250 Micron Flexible Microcatheter. PLoS ONE, 2011, 6, e17140.	1.1	50
157	Alternative splice variants of the USH3A gene Clarin 1 (CLRN1). European Journal of Human Genetics, 2011, 19, 30-35.	1.4	25
158	DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature, 2011, 471, 325-330.	13.7	573
159	Novel Properties of Tyrosine-mutant AAV2 Vectors in the Mouse Retina. Molecular Therapy, 2011, 19, 293-301.	3.7	234
160	AAV Delivery of Wild-Type Rhodopsin Preserves Retinal Function in a Mouse Model of Autosomal Dominant Retinitis Pigmentosa. Human Gene Therapy, 2011, 22, 567-575.	1.4	104
161	Gene therapy using self-complementary Y733F capsid mutant AAV2/8 restores vision in a model of early onset Leber congenital amaurosis. Human Molecular Genetics, 2011, 20, 4569-4581.	1.4	43
162	Virally delivered Channelrhodopsin-2 Safely and Effectively Restores Visual Function in Multiple Mouse Models of Blindness. Molecular Therapy, 2011, 19, 1220-1229.	3.7	261

#	Article	IF	CITATIONS
163	Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice. Nucleic Acids Research, 2011, 39, 5955-5966.	6.5	27
164	Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet-Biedl syndrome mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6276-6281.	3.3	80
165	Long-term RNA interference gene therapy in a dominant retinitis pigmentosa mouse model. Proceedings of the United States of America, 2011, 108, 18476-18481.	3.3	46
166	Î ³ -Secretase and Presenilin Mediate Cleavage and Phosphorylation of Vascular Endothelial Growth Factor Receptor-1. Journal of Biological Chemistry, 2011, 286, 42514-42523.	1.6	41
167	Whirlin Replacement Restores the Formation of the USH2 Protein Complex in Whirlin Knockout Photoreceptors. , 2011, 52, 2343.		64
168	Quantifying transduction efficiencies of unmodified and tyrosine capsid mutant AAV vectors in vitro using two ocular cell lines. Molecular Vision, 2011, 17, 1090-102.	1.1	31
169	Induction of Rapid and Highly Efficient Expression of the Human ND4 Complex I Subunit in the Mouse Visual System by Self-complementary Adeno-Associated Virus. JAMA Ophthalmology, 2010, 128, 876.	2.6	46
170	Leber Hereditary Optic Neuropathy Gene Therapy Clinical Trial Recruitment. JAMA Ophthalmology, 2010, 128, 1129.	2.6	68
171	Selective tropism of the recombinant adenoâ€associated virus 9 serotype for rat cardiac tissue. Journal of Gene Medicine, 2010, 12, 22-34.	1.4	13
172	Retinal Disease in Rpe65-Deficient Mice: Comparison to Human Leber Congenital Amaurosis Due to <i>RPE65</i> Mutations. , 2010, 51, 5304.		27
173	Restoration of visual function in P23H rhodopsin transgenic rats by gene delivery of BiP/Grp78. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5961-5966.	3.3	265
174	Mechanistic Basis for the Failure of Cone Transducin to Translocate: Why Cones Are Never Blinded by Light. Journal of Neuroscience, 2010, 30, 6815-6824.	1.7	54
175	Gene therapy rescues cone function in congenital achromatopsia. Human Molecular Genetics, 2010, 19, 2581-2593.	1.4	235
176	Molecular Anthropology Meets Genetic Medicine to Treat Blindness in the North African Jewish Population: Human Gene Therapy Initiated in Israel. Human Gene Therapy, 2010, 21, 1749-1757.	1.4	65
177	Diabetic eNOS-Knockout Mice Develop Accelerated Retinopathy. , 2010, 51, 5240.		101
178	Retinal Diseases. , 2010, , 327-344.		0
179	Self-complementary AAV5 vector facilitates quicker transgene expression inÂphotoreceptor and retinal pigment epithelial cells of normal mouse. Experimental Eye Research, 2010, 90, 546-554.	1.2	47
180	Achromatopsia as a Potential Candidate for Gene Therapy. Advances in Experimental Medicine and Biology, 2010, 664, 639-646.	0.8	38

#	Article	IF	CITATIONS
181	Functional and Behavioral Restoration of Vision by Gene Therapy in the Guanylate Cyclase-1 (GC1) Knockout Mouse. PLoS ONE, 2010, 5, e11306.	1.1	89
182	AAVâ€mediated sFLTâ€1 gene therapy ameliorates retinal lesions in Ccl2/Cx3cr1 deficient mice. FASEB Journal, 2010, 24, 568.8.	0.2	1
183	Effect of CNTF on Retinal Ganglion Cell Survival in Experimental Glaucoma. , 2009, 50, 2194.		195
184	Efficiency and Safety of AAV-Mediated Gene Delivery of the Human ND4 Complex I Subunit in the Mouse Visual System. , 2009, 50, 4205.		76
185	Effects on XIAP Retinal Detachment–Induced Photoreceptor Apoptosis. , 2009, 50, 1448.		37
186	Functional interchangeability of rod and cone transducin $\hat{I}\pm$ -subunits. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17681-17686.	3.3	39
187	Clarin-1, Encoded by the Usher Syndrome III Causative Gene, Forms a Membranous Microdomain. Journal of Biological Chemistry, 2009, 284, 18980-18993.	1.6	51
188	Angiostatin overexpression is associated with an improvement in chronic kidney injury by an anti-inflammatory mechanism. American Journal of Physiology - Renal Physiology, 2009, 296, F145-F152.	1.3	34
189	Gene therapy for red–green colour blindness in adult primates. Nature, 2009, 461, 784-787.	13.7	282
190	Vision 1 Year after Gene Therapy for Leber's Congenital Amaurosis. New England Journal of Medicine, 2009, 361, 725-727.	13.9	197
191	High-efficiency Transduction of the Mouse Retina by Tyrosine-mutant AAV Serotype Vectors. Molecular Therapy, 2009, 17, 463-471.	3.7	355
192	Human <i>RPE65</i> Gene Therapy for Leber Congenital Amaurosis: Persistence of Early Visual Improvements and Safety at 1 Year. Human Gene Therapy, 2009, 20, 999-1004.	1.4	305
193	Lowering Blood Pressure Blocks Mesangiolysis and Mesangial Nodules, but Not Tubulointerstitial Injury, in Diabetic eNOS Knockout Mice. American Journal of Pathology, 2009, 174, 1221-1229.	1.9	40
194	AAV9 mediates more specific cardiac gene transfer in the rat than AAV2, AAV5, AAV7, and AAV8. FASEB Journal, 2009, 23, 939.12.	0.2	0
195	Gene therapy following subretinal AAV5 vector delivery is not affected by a previous intravitreal AAV5 vector administration in the partner eye. Molecular Vision, 2009, 15, 267-75.	1.1	40
196	Efficient expression of self-complementary AAV in ganglion cells of the ex vivo primate retina. Molecular Vision, 2009, 15, 2796-802.	1.1	16
197	Cone-specific expression using a human red opsin promoter in recombinant AAV. Vision Research, 2008, 48, 332-338.	0.7	42
198	Comparative analysis of in vivo and in vitro AAV vector transduction in the neonatal mouse retina: Effects of serotype and site of administration. Vision Research, 2008, 48, 377-385.	0.7	87

#	Article	IF	CITATIONS
199	<i>Dicer</i> Inactivation Leads to Progressive Functional and Structural Degeneration of the Mouse Retina. Journal of Neuroscience, 2008, 28, 4878-4887.	1.7	204
200	Longitudinal evaluation of expression of virally delivered transgenes in gerbil cone photoreceptors. Visual Neuroscience, 2008, 25, 273-282.	0.5	8
201	Toward a Higher Fidelity Model of AMD. Advances in Experimental Medicine and Biology, 2008, 613, 185-192.	0.8	1
202	Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15112-15117.	3.3	639
203	Gene Therapy for Mouse Models of ADRP. Advances in Experimental Medicine and Biology, 2008, 613, 107-112.	0.8	5
204	AAV-Mediated Gene Therapy for Retinal Degeneration in the <i>rd10</i> Mouse Containing a Recessive PDEβ Mutation. , 2008, 49, 4278.		133
205	Downregulation of p22phox in Retinal Pigment Epithelial Cells Inhibits Choroidal Neovascularization in Mice. Molecular Therapy, 2008, 16, 1688-1694.	3.7	38
206	Effect of Late-stage Therapy on Disease Progression in AAV-mediated Rescue of Photoreceptor Cells in the Retinoschisin-deficient Mouse. Molecular Therapy, 2008, 16, 1010-1017.	3.7	91
207	Treatment of Leber Congenital Amaurosis Due to <i>RPE65</i> Mutations by Ocular Subretinal Injection of Adeno-Associated Virus Gene Vector: Short-Term Results of a Phase I Trial. Human Gene Therapy, 2008, 19, 979-990.	1.4	880
208	Range of Retinal Diseases Potentially Treatable by AAV-Vectored Gene Therapy. Novartis Foundation Symposium, 2008, , 179-194.	1.2	18
209	Adeno-Associated Viral Vectors and the Retina. Advances in Experimental Medicine and Biology, 2008, 613, 121-128.	0.8	33
210	Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Molecular Vision, 2008, 14, 1760-9.	1.1	140
211	Exploring the molecular mechanism of ocular angiogenesis inhibition by triamcinolone acetonide. Expert Review of Ophthalmology, 2007, 2, 19-22.	0.3	0
212	Use of Mitochondrial Antioxidant Defenses for Rescue of Cells With a Leber Hereditary Optic Neuropathy–Causing Mutation. JAMA Ophthalmology, 2007, 125, 268.	2.6	51
213	Long-term Suppression of Neurodegeneration in Chronic Experimental Optic Neuritis: Antioxidant Gene Therapy. , 2007, 48, 5360.		52
214	Molecular and Cellular Alterations Induced by Sustained Expression of Ciliary Neurotrophic Factor in a Mouse Model of Retinitis Pigmentosa. , 2007, 48, 1389.		70
215	SOD2 Knockdown Mouse Model of Early AMD. , 2007, 48, 4407.		201
216	Brain-Derived Neurotrophic Factor Gene Transfer With Adeno-Associated Viral and Lentiviral Vectors Prevents Rubrospinal Neuronal Atrophy and Stimulates Regeneration-Associated Gene Expression After Acute Cervical Spinal Cord Injury. Spine, 2007, 32, 1164-1173.	1.0	73

#	Article	IF	CITATIONS
217	Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2007, 24, 1411.	0.8	26
218	Canine and Human Visual Cortex Intact and Responsive Despite Early Retinal Blindness from RPE65 Mutation. PLoS Medicine, 2007, 4, e230.	3.9	107
219	Suppression of Mitochondrial Oxidative Stress Provides Long-term Neuroprotection in Experimental Optic Neuritis. , 2007, 48, 681.		115
220	The Mutant Human ND4 Subunit of Complex I Induces Optic Neuropathy in the Mouse. , 2007, 48, 1.		107
221	Intraocular CNTF Reduces Vision in Normal Rats in a Dose-Dependent Manner. , 2007, 48, 5756.		74
222	Increased Sensitivity to Light-Induced Damage in a Mouse Model of Autosomal Dominant Retinal Disease. , 2007, 48, 1942.		58
223	Rapid, widespread transduction of the murine myocardium using self-complementary Adeno-associated virus. Genetic Vaccines and Therapy, 2007, 5, 13.	1.5	13
224	Restoration of cone vision in a mouse model of achromatopsia. Nature Medicine, 2007, 13, 685-687.	15.2	200
225	XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa. PLoS ONE, 2007, 2, e314.	1.1	73
226	Dual gene therapy with extracellular superoxide dismutase and catalase attenuates experimental optic neuritis. Molecular Vision, 2007, 13, 1-11.	1.1	26
227	Electroretinographic analyses of Rpe65-mutant rd12 mice: developing an in vivo bioassay for human gene therapy trials of Leber congenital amaurosis. Molecular Vision, 2007, 13, 1701-10.	1.1	28
228	Gene Therapy Restores Vision-Dependent Behavior as Well as Retinal Structure and Function in a Mouse Model of RPE65 Leber Congenital Amaurosis. Molecular Therapy, 2006, 13, 565-572.	3.7	185
229	Human Blue-Opsin Promoter Preferentially Targets Reporter Gene Expression to Rat S-Cone Photoreceptors. , 2006, 47, 3505.		35
230	Light-Driven Cone Arrestin Translocation in Cones of Postnatal Guanylate Cyclase-1 Knockout Mouse Retina Treated with AAV-GC1. , 2006, 47, 3745.		68
231	Safety in Nonhuman Primates of Ocular AAV2-RPE65, a Candidate Treatment for Blindness in Leber Congenital Amaurosis. Human Gene Therapy, 2006, 17, 845-858.	1.4	142
232	Lentiviral Gene Transfer of Rpe65 Rescues Survival and Function of Cones in a Mouse Model of Leber Congenital Amaurosis. PLoS Medicine, 2006, 3, e347.	3.9	100
233	Lentiviral Vectors Containing a Retinal Pigment Epithelium Specific Promoter for Leber Congenital Amaurosis Gene Therapy. Advances in Experimental Medicine and Biology, 2006, 572, 247-253.	0.8	9
234	Mitochondrial Protein Nitration Primes Neurodegeneration in Experimental Autoimmune Encephalomyelitis. Journal of Biological Chemistry, 2006, 281, 31950-31962.	1.6	123

#	Article	IF	CITATIONS
235	Safety of Recombinant Adeno-Associated Virus Type 2–RPE65 Vector Delivered by Ocular Subretinal Injection. Molecular Therapy, 2006, 13, 1074-1084.	3.7	196
236	Mitochondrial Protein Nitration Primes Neurodegeneration in Experimental Autoimmune Encephalomyelitis. Journal of Biological Chemistry, 2006, 281, 31950-31962.	1.6	33
237	Does recombinant adeno-associated virus-vectored proximal region of mouse rhodopsin promoter support only rod-type specific expression in vivo?. Molecular Vision, 2006, 12, 298-309.	1.1	14
238	Extracellular signal-regulated kinase 1/2 mediates survival, but not axon regeneration, of adult injured central nervous system neurons in vivo. Journal of Neurochemistry, 2005, 93, 72-83.	2.1	70
239	Pharmacological and rAAV Gene Therapy Rescue of Visual Functions in a Blind Mouse Model of Leber Congenital Amaurosis. PLoS Medicine, 2005, 2, e333.	3.9	120
240	IL-10 Suppresses Chemokines, Inflammation, and Fibrosis in a Model of Chronic Renal Disease. Journal of the American Society of Nephrology: JASN, 2005, 16, 3651-3660.	3.0	134
241	Efficient Transduction of Vascular Endothelial Cells with Recombinant Adeno-Associated Virus Serotype 1 and 5 Vectors. Human Gene Therapy, 2005, 16, 235-247.	1.4	84
242	Long-Term Restoration of Rod and Cone Vision by Single Dose rAAV-Mediated Gene Transfer to the Retina in a Canine Model of Childhood Blindness. Molecular Therapy, 2005, 12, 1072-1082.	3.7	421
243	Adeno-Associated Virus-Vectored Gene Therapy for Retinal Disease. Human Gene Therapy, 2005, 16, 649-663.	1.4	98
244	Localized Gene Expression Following Administration of Adeno-associated Viral Vectors via Pancreatic Ducts. Molecular Therapy, 2005, 12, 519-527.	3.7	30
245	Prolonged Recovery of Retinal Structure/Function after Gene Therapy in an Rs1h-Deficient Mouse Model of X-Linked Juvenile Retinoschisis. Molecular Therapy, 2005, 12, 644-651.	3.7	166
246	Adeno-Associated Virus-Mediated Expression of Vascular Endothelial Growth Factor Peptides Inhibits Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. Human Gene Therapy, 2005, 16, 1247-1254.	1.4	17
247	Interleukin 10 attenuates neointimal proliferation and inflammation in aortic allografts by a heme oxygenase-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7251-7256.	3.3	101
248	Retinal degeneration 12 (rd12): a new, spontaneously arising mouse model for human Leber congenital amaurosis (LCA). Molecular Vision, 2005, 11, 152-62.	1.1	159
249	Knockdown of wild-type mouse rhodopsin using an AAV vectored ribozyme as part of an RNA replacement approach. Molecular Vision, 2005, 11, 648-56.	1.1	39
250	SOD2 gene transfer protects against optic neuropathy induced by deficiency of complex I. Annals of Neurology, 2004, 56, 182-191.	2.8	73
251	Range of retinal diseases potentially treatable by AAV-vectored gene therapy. Novartis Foundation Symposium, 2004, 255, 179-88; discussion 188-94.	1.2	6
252	Suppression of complex I gene expression induces optic neuropathy. Annals of Neurology, 2003, 53, 198-205.	2.8	83

#	Article	IF	CITATIONS
253	Gene Therapy with Brain-Derived Neurotrophic Factor As a Protection: Retinal Ganglion Cells in a Rat Glaucoma Model. , 2003, 44, 4357.		336
254	Anti-apoptotic effects of CNTF gene transfer on photoreceptor degeneration in experimental antibody-induced retinopathy. Journal of Autoimmunity, 2003, 21, 121-129.	3.0	42
255	Structural and Functional Protection of Photoreceptors from MNU-Induced Retinal Degeneration by the X-Linked Inhibitor of Apoptosis. , 2003, 44, 2757.		51
256	XIAP Protects Photoreceptors from N-Methyl-N-Nitrosourea-Induced Retinal Degeneration. Advances in Experimental Medicine and Biology, 2003, 533, 385-393.	0.8	8
257	Adeno-associated virus type-2 expression of pigmented epithelium-derived factor or Kringles 1-3 of angiostatin reduce retinal neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8909-8914.	3.3	124
258	Baculoviral IAP Repeat-Containing-4 Protects Optic Nerve Axons in a Rat Glaucoma Model. Molecular Therapy, 2002, 5, 780-787.	3.7	151
259	Effects of Adeno-associated Virus-vectored Ciliary Neurotrophic Factor on Retinal Structure and Function in Mice with a P216L rds/peripherin Mutation. Experimental Eye Research, 2002, 74, 719-735.	1.2	267
260	Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods, 2002, 28, 158-167.	1.9	514
261	TrkB Gene Transfer Protects Retinal Ganglion Cells from Axotomy-Induced Death <i>In Vivo</i> . Journal of Neuroscience, 2002, 22, 3977-3986.	1.7	245
262	Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Annals of Neurology, 2002, 52, 534-542.	2.8	253
263	AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Investigative Ophthalmology and Visual Science, 2002, 43, 1994-2000.	3.3	168
264	Ribozyme gene therapy: applications for molecular medicine. Trends in Molecular Medicine, 2001, 7, 221-228.	3.5	106
265	Title is missing!. Nature Genetics, 2001, 28, 92-95.	9.4	132
266	Gene therapy restores vision in a canine model of childhood blindness. Nature Genetics, 2001, 28, 92-95.	9.4	1,130
267	Glial Cell Line Derived Neurotrophic Factor Delays Photoreceptor Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa. Molecular Therapy, 2001, 4, 622-629.	3.7	173
268	Recombinant Adeno-Associated Virus Vector-Based Gene Transfer for Defects in Oxidative Metabolism. Human Gene Therapy, 2000, 11, 2067-2078.	1.4	33
269	Ribozyme Gene Therapy for Autosomal Dominant Retinal Disease. Clinical Chemistry and Laboratory Medicine, 2000, 38, 147-53.	1.4	28
270	[48] Production and purification of recombinant adeno-associated virus. Methods in Enzymology, 2000, 316, 743-761.	0.4	152

#	Article	IF	CITATIONS
271	Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nature Medicine, 1998, 4, 967-971.	15.2	396
272	Bovine opsin gene expression exhibits a late fetal to adult regulatory switch. Journal of Neuroscience Research, 1995, 40, 728-736.	1.3	3
273	Topographical regulation of cone and rod opsin genes: parallel, position dependent levels of transcription. Developmental Brain Research, 1995, 89, 146-149.	2.1	9
274	Synthesis and Stability of Retinal Photoreceptor mRNAs are Coordinately Regulated During Bovine Fetal Development. Experimental Eye Research, 1993, 56, 257-265.	1.2	32
275	Ancient HLA genes from 7,500-year-old archaeological remains. Nature, 1991, 349, 785-788.	13.7	126
276	Anatomical, cellular and molecular analysis of 8,000-yr-old human brain tissue from the Windover archaeological site. Nature, 1986, 323, 803-806.	13.7	147
277	Length heterogeneity of a conserved displacement-loop sequence in human mitochondrial DNA. Nucleic Acids Research, 1985, 13, 8093-8104.	6.5	80
278	Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop. Nature, 1983, 306, 400-402.	13.7	231
279	Adeno-associated virus DNA replication: Nonunit-length molecules. Virology, 1979, 93, 57-68.	1.1	92
280	Origin and termination of adeno-associated virus DNA replication. Virology, 1977, 78, 488-499.	1.1	183
281	EXCITED STATE PROCESSES AND SOLUTION CONFORMATION OF DIPYRIMIDINE ADDUCTS. Photochemistry and Photobiology, 1977, 25, 161-166.	1.3	17
282	CYTIDINE (5)â€₽HOTOEXCHANGE: A KINETIC ANALYSIS*. Photochemistry and Photobiology, 1977, 26, 231-2	34.3	7
283	Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia. Human Gene Therapy Clinical Development, 0, , .	3.2	1