Tomohiro Takaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3948727/publications.pdf

Version: 2024-02-01

148 papers 4,133 citations

36 h-index 59 g-index

149 all docs 149 docs citations

times ranked

149

2014 citing authors

#	Article	IF	CITATIONS
1	Phase-field study on an array of tilted columnar dendrites during the directional solidification of a binary alloy. Computational Materials Science, 2022, 203, 111143.	1.4	11
2	Time invariance of three-dimensional morphology of equiaxed dendrite: A phase-field study. Computational Materials Science, 2022, 204, 111173.	1.4	3
3	Parallel-GPU-accelerated adaptive mesh refinement for three-dimensional phase-field simulation of dendritic growth during solidification of binary alloy. Materials Theory, 2022, 6, .	2.2	20
4	A phase field-finite difference lattice Boltzmann method for modeling dendritic growth solidification in the presence of melt convection. Computers and Mathematics With Applications, 2022, 114, 180-187.	1.4	3
5	Inverse analysis of anisotropy of solid-liquid interfacial free energy based on machine learning. Computational Materials Science, 2022, 207, 111294.	1.4	О
6	Parallel GPU-accelerated adaptive mesh refinement on two-dimensional phase-field lattice Boltzmann simulation of dendrite growth. Computational Materials Science, 2022, 211, 111507.	1.4	6
7	Parallel-GPU AMR implementation for phase-field lattice Boltzmann simulation of a settling dendrite. Computational Materials Science, 2022, 211, 111542.	1.4	3
8	Large-scale phase-field study of anisotropic grain growth: Effects of misorientation-dependent grain boundary energy and mobility. Computational Materials Science, 2021, 186, 109992.	1.4	29
9	Two-dimensional phase-field study for spangle texture formation in hot-dip galvanizing. Computational Materials Science, 2021, 187, 110077.	1.4	4
10	Phase-field lattice Boltzmann method with two-relaxation-time model for dendrite growth of a binary alloy with melt convection. Computational Materials Science, 2021, 186, 110070.	1.4	17
11	Simulation of turbulent bubbly pipe flow with high density ratio and high reynolds number by using the lattice boltzmann method and a multi-phase field model. International Journal of Multiphase Flow, 2021, 134, 103505.	1.6	11
12	Uniquely selected primary dendrite arm spacing during competitive growth of columnar grains in Al–Cu alloy. Journal of Crystal Growth, 2021, 558, 126014.	0.7	8
13	Multi-phase-field lattice Boltzmann model for polycrystalline equiaxed solidification with motion. Computational Materials Science, 2021, 197, 110658.	1.4	14
14	Bayesian Data Assimilation of Temperature Dependence of Solid–Liquid Interfacial Properties of Nickel. Nanomaterials, 2021, 11, 2308.	1.9	11
15	Novel estimation method for anisotropic grain boundary properties based on Bayesian data assimilation and phase-field simulation. Materials and Design, 2021, 210, 110089.	3.3	13
16	Large–scale phase–field lattice Boltzmann study on the effects of natural convection on dendrite morphology formed during directional solidification of a binary alloy. Computational Materials Science, 2020, 171, 109209.	1.4	42
17	Overgrowth behavior at converging grain boundaries during competitive grain growth: A two-dimensional phase-field study. International Journal of Heat and Mass Transfer, 2020, 160, 120196.	2.5	9
18	Bayesian inference of solid-liquid interfacial properties out of equilibrium. Physical Review E, 2020, 101, 052121.	0.8	22

#	Article	IF	CITATIONS
19	Two-dimensional large-scale phase-field lattice Boltzmann simulation of polycrystalline equiaxed solidification with motion of a massive number of dendrites. Computational Materials Science, 2020, 178, 109639.	1.4	39
20	A domain partitioning method using a multi-phase-field model for block-based AMR applications. Parallel Computing, 2020, 97, 102647.	1.3	6
21	Permeability tensor for columnar dendritic structures: Phase-field and lattice Boltzmann study. Acta Materialia, 2020, 188, 282-287.	3.8	27
22	Accuracy Evaluation of Phase-field Models for Grain Growth Simulation with Anisotropic Grain Boundary Properties. ISIJ International, 2020, 60, 160-167.	0.6	19
23	High Performance Computing of Solidification Microstructures and Emergence of Cross-scale Approach. Materia Japan, 2020, 59, 139-144.	0.1	0
24	Acceleration of phase-field lattice Boltzmann simulation of dendrite growth with thermosolutal convection by the multi-GPUs parallel computation with multiple mesh and time step method. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 054004.	0.8	19
25	Competitive growth during directional solidification of a binary alloy with natural convection: two-dimensional phase-field study. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 054001.	0.8	13
26	Large-scale phase-field simulation of three-dimensional isotropic grain growth in polycrystalline thin films. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 054003.	0.8	14
27	Micrometer-scale molecular dynamics simulation of microstructure formation linked with multi-phase-field simulation in same space scale. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 054002.	0.8	14
28	A parametric study of morphology selection in equiaxed dendritic solidification. Computational Materials Science, 2019, 162, 76-81.	1.4	16
29	Simulation method based on phase-field lattice Boltzmann model for long-distance sedimentation of single equiaxed dendrite. Computational Materials Science, 2019, 164, 39-45.	1.4	25
30	Multi-Phase-Field Modeling of Transformation Kinetics at Multiple Scales and Its Application to Welding of Steel. Materials Transactions, 2019, 60, 170-179.	0.4	9
31	Multi-phase-field modeling using a conservative Allen–Cahn equation for multiphase flow. Computers and Fluids, 2019, 178, 141-151.	1.3	73
32	Permeability prediction for flow normal to columnar solidification structures by large–scale simulations of phase–field and lattice Boltzmann methods. Acta Materialia, 2019, 164, 237-249.	3.8	37
33	Recent developments of dendritic solidification simulations by phase-field method. Keikinzoku/Journal of Japan Institute of Light Metals, 2019, 69, 562-568.	0.1	0
34	Phase-field lattice Boltzmann simulations of multiple dendrite growth with motion, collision, and coalescence and subsequent grain growth. Computational Materials Science, 2018, 147, 124-131.	1.4	66
35	Grain growth kinetics in submicrometer-scale molecular dynamics simulation. Acta Materialia, 2018, 153, 108-116.	3.8	36
36	Multi-phase field topology optimization of polycrystalline microstructure for maximizing heat conductivity. Structural and Multidisciplinary Optimization, 2018, 57, 1937-1954.	1.7	6

3

#	Article	IF	Citations
37	Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method. Journal of Crystal Growth, 2018, 483, 147-155.	0.7	39
38	Phase-Field Analysis of Dendrite Growth with Melt Flow. Japanese Journal of Multiphase Flow, 2018, 32, 337-344.	0.1	0
39	Advent of Crossâ€Scale Modeling: Highâ€Performance Computing of Solidification and Grain Growth. Advanced Theory and Simulations, 2018, 1, 1800065.	1.3	40
40	Correlation between three-dimensional and cross-sectional characteristics of ideal grain growth: large-scale phase-field simulation study. Journal of Materials Science, 2018, 53, 15165-15180.	1.7	12
41	Bridging molecular dynamics and phase-field methods for grain growth prediction. Computational Materials Science, 2018, 152, 118-124.	1.4	21
42	Competitive grain growth during directional solidification of a polycrystalline binary alloy: Three-dimensional large-scale phase-field study. Materialia, 2018, 1, 104-113.	1.3	57
43	Multi-GPUs parallel computation of dendrite growth in forced convection using the phase-field-lattice Boltzmann model. Journal of Crystal Growth, 2017, 474, 154-159.	0.7	81
44	Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nature Communications, 2017, 8, 10.	5.8	219
45	Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth. Journal of Crystal Growth, 2017, 474, 160-165.	0.7	24
46	Numerical testing of quantitative phase-field models with different polynomials for isothermal solidification in binary alloys. Journal of Computational Physics, 2017, 335, 621-636.	1.9	20
47	Molecular dynamics simulations investigating consecutive nucleation, solidification and grain growth in a twelve-million-atom Fe-system. Journal of Crystal Growth, 2017, 474, 140-145.	0.7	23
48	Phase-field-lattice Boltzmann studies for dendritic growth with natural convection. Journal of Crystal Growth, 2017, 474, 146-153.	0.7	61
49	Variational formulation of a quantitative phase-field model for nonisothermal solidification in a multicomponent alloy. Physical Review E, 2017, 96, 033311.	0.8	31
50	Ultra-large-scale phase-field simulation study of ideal grain growth. Npj Computational Materials, 2017, 3, .	3.5	77
51	Phase-field topology optimization model that removes the curvature effects. Mechanical Engineering Journal, 2017, 4, 16-00462-16-00462.	0.2	5
52	A Molecular Dynamics Study of Partitionless Solidification and Melting of Al–Cu Alloys. ISIJ International, 2017, 57, 1774-1779.	0.6	14
53	Large-scale Phase-field Studies of Three-dimensional Dendrite Competitive Growth at the Converging Grain Boundary during Directional Solidification of a Bicrystal Binary Alloy. ISIJ International, 2016, 56, 1427-1435.	0.6	39
54	Extended higher-order multi-phase-field model for three-dimensional anisotropic-grain-growth simulations. Computational Materials Science, 2016, 120, 77-83.	1.4	31

#	Article	IF	CITATIONS
55	Primary arm array during directional solidification of a single-crystal binary alloy: Large-scale phase-field study. Acta Materialia, 2016, 118, 230-243.	3.8	87
56	Variational formulation and numerical accuracy of a quantitative phase-field model for binary alloy solidification with two-sided diffusion. Physical Review E, 2016, 93, 012802.	0.8	31
57	Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature. Acta Materialia, 2016, 105, 328-337.	3.8	86
58	Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy. Journal of Crystal Growth, 2016, 442, 14-24.	0.7	76
59	Validation of a novel higher-order multi-phase-field model for grain-growth simulations using anisotropic grain-boundary properties. Computational Materials Science, 2016, 112, 44-51.	1.4	50
60	Variational formulation of quantitative phase-field model. The Proceedings of the Computational Mechanics Conference, 2016, 2016.29, 4_133.	0.0	0
61	Phase-field modeling for axonal extension of nerve cells. Mechanical Engineering Journal, 2015, 2, 15-00063-15-00063.	0.2	7
62	Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation. Scientific Reports, 2015, 5, 13534.	1.6	84
63	GPU phase-field lattice Boltzmann simulations of growth and motion of a binary alloy dendrite. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012066.	0.3	39
64	Microsegregation in multicomponent alloy analysed by quantitative phase-field model. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012075.	0.3	6
65	Solidification in a Supercomputer: From Crystal Nuclei to Dendrite Assemblages. Jom, 2015, 67, 1793-1804.	0.9	92
66	A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection. Journal of Computational Physics, 2015, 298, 29-40.	1.9	117
67	GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012063.	0.3	25
68	Phase-Field Modeling for Dynamic Recrystallization. Advanced Structured Materials, 2015, , 441-459.	0.3	10
69	101 Development of a multi-phase-field-lattice Boltzmann model for multiple dendrites growing under melt convection. The Proceedings of the Computational Mechanics Conference, 2015, 2015.28, _101-1101-2	0.0	0
70	Multi-Phase-Field Simulation of Flow Stress and Microstructural Evolution during Deformation-Induced Ferrite Transformation in a Fe–C Alloy. ISIJ International, 2014, 54, 2917-2925.	0.6	4
71	Development of multi-phase-field crack model for crack propagation in polycrystal. International Journal of Computational Materials Science and Engineering, 2014, 03, 1450009.	0.5	7
72	Multiscale modeling of hot-working with dynamic recrystallization by coupling microstructure evolution and macroscopic mechanical behavior. International Journal of Plasticity, 2014, 52, 105-116.	4.1	75

#	Article	IF	Citations
73	Multi-Phase-Field Analysis of Stress–Strain Curve and Ferrite Grain Formation during Dynamic Strain-Induced Ferrite Transformation. Key Engineering Materials, 2014, 626, 81-84.	0.4	O
74	Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal. Acta Materialia, 2014, 81, 272-283.	3.8	129
75	Multiscale Hot-working Simulations Using Multi-phase-field and Finite Element Dynamic Recrystallization Model. ISIJ International, 2014, 54, 452-459.	0.6	22
76	Phase-field Modeling and Simulations of Dendrite Growth. ISIJ International, 2014, 54, 437-444.	0.6	164
77	A phase-field-lattice Boltzmann method for predicting dendritic growth and motion in solidification of binary alloys. The Proceedings of the Computational Mechanics Conference, 2014, 2014.27, 591-592.	0.0	1
78	Unexpected selection of growing dendrites by very-large-scale phase-field simulation. Journal of Crystal Growth, 2013, 382, 21-25.	0.7	109
79	2D Phase-Field Analyses of Axonal Extension of Nerve Cell. , 2013, , .		1
80	Simulation of Microstructure Evolution and Deformation Behavior for Dual-Phase Steel by Multi-Phase-Field Method and Elastoplastic Finite Element Method. International Journal of Automation Technology, 2013, 7, 16-23.	0.5	6
81	Phase-field Modeling to Predict Microstructure and Mechanical Behavior of Polycrystalline Metallic Materials. Journal of the Japan Society for Technology of Plasticity, 2013, 54, 906-910.	0.0	0
82	W012004 Dynamic Recrystallization Simulations of LPSO Type Magnesium Alloy by Phase-Field Method. The Proceedings of Mechanical Engineering Congress Japan, 2013, 2013, _W012004-1W012004-4.	0.0	0
83	Simulation of Austenite-to-ferrite Transformation in Deformed Austenite by Crystal Plasticity Finite Element Method and Multi-phase-field Method. ISIJ International, 2012, 52, 659-668.	0.6	39
84	Multiphase Field Simulation of Austenite-to-Ferrite Transformation Accelerated by GPU Computing. Journal of Computational Science and Technology, 2012, 6, 182-197.	0.4	11
85	Numerical investigations of stress in dendrites caused by gravity. Journal of Crystal Growth, 2011, 337, 97-101.	0.7	14
86	Development of Phase-Field Topology Optimization Model and Its Fundamental Performance Evaluations. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2011, 77, 1840-1850.	0.2	1
87	Multi-phase-field Simulations of Dynamic Recrystallization during Transient Deformation. ISIJ International, 2011, 51, 1717-1723.	0.6	21
88	GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy. Journal of Crystal Growth, 2011, 318, 40-45.	0.7	79
89	Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer. , 2011, , .		117
90	Mechanical Behaviors of Pipe Flange Connection with Filled PTFE Gasket. Zairyo/Journal of the Society of Materials Science, Japan, 2011, 60, 521-526.	0.1	0

#	Article	IF	Citations
91	907 Evaluation of Fundamental Performance on Phase-Field Topology Optimization Model. The Proceedings of the Computational Mechanics Conference, 2011, 2011.24, 298-299.	0.0	0
92	The Effects of Structure Orientation on the Growth of Fe ₂ B Boride by Multi-Phase-Field Simulation. Materials Transactions, 2010, 51, 62-67.	0.4	16
93	Axial Bolt Force Behaviours under High Temperature and Long Time of Single Bolted Connection with Soft Gasket. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2010, 76, 2219-2224.	0.2	0
94	Static recrystallization simulations starting from predicted deformation microstructure by coupling multi-phase-field method and finite element method based on crystal plasticity. International Journal of Mechanical Sciences, 2010, 52, 320-328.	3.6	100
95	Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal. International Journal of Mechanical Sciences, 2010, 52, 245-250.	3.6	74
96	Effects of temperature and grain size on phase-field-crystal deformation simulation. International Journal of Mechanical Sciences, 2010, 52, 309-319.	3.6	33
97	Development of numerical scheme for phase field crystal deformation simulation. Computational Materials Science, 2009, 44, 1192-1197.	1.4	69
98	Multi-phase-field simulations for dynamic recrystallization. Computational Materials Science, 2009, 45, 881-888.	1.4	128
99	Development of Crystal Plasticity Phase-Field Model and Simulation of Microstructure Evolution with Plastic Deformation. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2009, 75, 1794-1803.	0.2	0
100	Multi-phase-field modeling of diffusive solid phase transition in carbon steel during continuous cooling transformation. Journal of Crystal Growth, 2008, 310, 1337-1342.	0.7	19
101	Phase-field study of interface energy effect on quantum dot morphology. Journal of Crystal Growth, 2008, 310, 2248-2253.	0.7	22
102	Coupled simulation of microstructural formation and deformation behavior of ferrite–pearlite steel by phase-field method and homogenization method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 480, 244-252.	2.6	28
103	Elastoplastic phase-field simulation of self- and plastic accommodations in <mmi:math altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>Cubic</mml:mtext><mml:mo>â†'</mml:mo><mml:mtext>tetragonal</mml:mtext><td>xtæ∳mml:</td><td>matt₂></td></mmi:math>	xtæ ∳ mml:	matt ₂ >
104	Microstructure and Processing, 2006, 491, 376 304. Material Deformation Simulation Using Phase Field Crystal Method. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 1441-1446.	0.2	1
105	Multi-Phase-Field Model to Simulate Microstructure Evolutions during Dynamic Recrystallization. Materials Transactions, 2008, 49, 2559-2565.	0.4	91
106	Free Energy Problem for the Simulations of the Growth of Fe ₂ B Phase Using Phase-Field Method. Materials Transactions, 2008, 49, 2625-2631.	0.4	31
107	Phase-Field Modeling and Simulation of Nucleation and Growth of Recrystallized Grains. Materials Science Forum, 2007, 558-559, 1195-1200.	0.3	7
108	Phase-Field Simulation of Surface Morphology Evolution during Epitaxial Growth of SiGe/Si System. Key Engineering Materials, 2007, 340-341, 1073-1078.	0.4	3

#	Article	IF	CITATIONS
109	Phase-Field Simulation during Spherulite Formation of Polymer. Key Engineering Materials, 2007, 345-346, 939-942.	0.4	6
110	Phase-field Analysis of Austenite-to-ferrite Transformation and Carbon Diffusion in Fe-C Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 209-215.	0.2	O
111	Development of Phase-Field Model and Computational Procedure During Static Primary Recrystallization. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2007, 73, 482-489.	0.2	4
112	Mechanical Behaviors of Bolted Joints Considering Visco-Elastic-Plastic Properties of Gasket (In Case) Tj ETQq0 0 0 Mechanical Engineers, Part C, 2007, 73, 1245-1252.	rgBT /Ove 0.2	erlock 10 Tf 1
113	Phase-field model during static recrystallization based on crystal-plasticity theory. Journal of Computer-Aided Materials Design, 2007, 14, 75-84.	0.7	69
114	Phase-Field Simulation of Austenite to Ferrite Transformation and Widmanstätten Ferrite Formation in Fe-C Alloy. Materials Transactions, 2006, 47, 2725-2731.	0.4	49
115	Phase-field Simulation of Widmanstaetten Ferrite Formation in Fe-C Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2006, 72, 1676-1683.	0.2	1
116	Two-dimensional phase-field simulation of self-assembled quantum dot formation. Journal of Crystal Growth, 2006, 287, 495-499.	0.7	28
117	Phase-Field Simulation of Shape Evolution and Bimodal Size Distribution of Self-Assembled Quantum Dots. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 929-935.	0.1	O
118	Simplified Analysis of the Tightening Process of Bolted Joint With a Bolt Heater., 2005,, 37.		3
119	Sealing Performance of Pipe Flange Connections. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 745-752.	0.2	2
120	Phase-field simulation during directional solidification of a binary alloy using adaptive finite element method. Journal of Crystal Growth, 2005, 283, 263-278.	0.7	67
121	Phase-Field Simulation of Quantum Dot Formation. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 595-600.	0.1	1
122	Effects of Flange Rotation on the Sealing Performance of Pipe Flange Connections., 2004,, 121.		4
123	Evaluations of the Tightening Process of Bolted Joint With Elastic Angle Control Method. , 2004, , 11.		19
124	Effective Bolting Up Procedure Using Finite Element Analysis and Elastic Interaction Coefficient Method., 2004,, 155.		8
125	Phase-Field Simulations of Anisotropic Morphologies during Directional Solidification of a Binary Alloy. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 456-463.	0.2	3
126	Bolt-Up Guideline for Pipe Flange Connections. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2004, 70, 2492-2499.	0.2	O

#	Article	IF	Citations
127	Phase Field Simulation of Grain Growth of Polycrystalline Metals. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2004, 70, 1551-1557.	0.2	2
128	Bolting Up Simulation of Pipe Flange Connections Taking Clamping Force Scatter Into Consideration. , 2004, , .		0
129	Finite Element Simulation of Bolt-Up Process of Pipe Flange Connections With Spiral Wound Gasket. Journal of Pressure Vessel Technology, Transactions of the ASME, 2003, 125, 371-378.	0.4	50
130	Elastic Plastic Finite Element Analysis of Bolted Joint During Tightening Process. Journal of Mechanical Design, Transactions of the ASME, 2003, 125, 823-830.	1.7	31
131	Three-Dimensional Finite Element Analysis of Pipe Flange Connections: The Case of Using Compressed Asbestos Sheet Gasket., 2002, , 171.		2
132	Three-Dimensional Finite Element Analysis of Pipe Flange Connections. In Case of Using Compressed Asbestos Sheet Gasket Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68, 8-14.	0.2	2
133	Systematical FE Analysis of Bolt Assembly Process of Pipe Flange Connections. , 2002, , 147.		8
134	Finite Element Simulation of the Dissassembly Process of Pipe Flange Connections Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68, 1622-1627.	0.2	1
135	Effective Bolt-Up Procedure of Pipe Flange Connections. Finite Element Analyses and Elastic Interaction Coefficient Methods Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2002, 68, 550-557.	0.2	3
136	Finite Element Simulation of the Disassembly Process of Pipe Flange Connections. , 2002, , .		0
137	Elasto-Plastic Analysis of the Tightening Process of Bolted Joint Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2001, 67, 1269-1275.	0.2	3
138	Finite Element Simulation of Bolt-Up Process of Pipe Flange Connections. Journal of Pressure Vessel Technology, Transactions of the ASME, 2001, 123, 282-287.	0.4	29
139	Three-Dimensional Finite Element Analysis of Pipe Flange Connections. (Effects of Solid-Metal Flat) Tj ETQq1 1 Engineers, Part A, 2000, 66, 651-657.	0.784314 i 0.2	rgBT /Overloc 2
140	Evaluations of Bolt-up Process of Pipe Flange Connection Using Finite Element Analysis. In Case of Using Spiral Wound Gasket Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2000, 66, 1834-1840.	0.2	2
141	Three-Dimensional Finite Element Analysis of Pipe Flange. Effects of Flange Interface Geometry Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1998, 64, 2402-2407.	0.2	8
142	Mechanical Behaviors of Bolted Joint in Various Clamping Configurations. Journal of Pressure Vessel Technology, Transactions of the ASME, 1998, 120, 226-231.	0.4	9
143	Mechanical Behaviors of Bolted Joint during Tightening Using Torque Control JSME International Journal Series A-Solid Mechanics and Material Engineering, 1998, 41, 185-191.	0.4	25
144	Evaluations of Bolt-Up Sequence of Pipe Flange Using Three-Dimensional Finite Element Analysis Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1998, 64, 2734-2740.	0.2	3

#	Article	IF	CITATIONS
145	Mechanical Behaviors of Bolted Joint during Tightening Using Torque Control Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1997, 63, 1083-1088.	0.2	4
146	Phase-Field Modeling of Morphological Change of Ferrite during Decomposition of Austenite in Fe-C Alloy. Key Engineering Materials, 0, 345-346, 935-938.	0.4	0
147	Development of Phase Field Simulation for the Growth of Dendrite Structure of Al-Si Cast Alloy. Materials Science Forum, 0, 737, 37-42.	0.3	O
148	Phase-Field Simulation during Spherulite Formation of Polymer. Key Engineering Materials, 0, , 939-942.	0.4	1