
Alexander W E Franz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3948711/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Dengue Virus Type 2 Infections of Aedes aegypti Are Modulated by the Mosquito's RNA Interference Pathway. PLoS Pathogens, 2009, 5, e1000299.	2.1	395
2	Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4198-4203.	3.3	357
3	Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses, 2015, 7, 3741-3767.	1.5	347
4	The RNA interference pathway affects midgut infection- and escape barriers for Sindbis virus in Aedes aegypti. BMC Microbiology, 2010, 10, 130.	1.3	99
5	Heritable CRISPR/Cas9-Mediated Genome Editing in the Yellow Fever Mosquito, Aedes aegypti. PLoS ONE, 2015, 10, e0122353.	1.1	88
6	Fitness Impact and Stability of a Transgene Conferring Resistance to Dengue-2 Virus following Introgression into a Genetically Diverse Aedes aegypti Strain. PLoS Neglected Tropical Diseases, 2014, 8, e2833.	1.3	70
7	African and Asian strains of Zika virus differ in their ability to infect and lyse primitive human placental trophoblast. PLoS ONE, 2018, 13, e0200086.	1.1	58
8	Chikungunya virus dissemination from the midgut of Aedes aegypti is associated with temporal basal lamina degradation during bloodmeal digestion. PLoS Neglected Tropical Diseases, 2017, 11, e0005976.	1.3	52
9	The midgut transcriptome of Aedes aegypti fed with saline or protein meals containing chikungunya virus reveals genes potentially involved in viral midgut escape. BMC Genomics, 2017, 18, 382.	1.2	50
10	Comparison of transgene expression in <i>Aedes aegypti</i> generated by <i>mariner Mos1</i> transposition and <i>I¦C31</i> siteâ€directed recombination. Insect Molecular Biology, 2011, 20, 587-598.	1.0	41
11	Infection pattern and transmission potential of chikungunya virus in two New World laboratory-adapted Aedes aegypti strains. Scientific Reports, 2016, 6, 24729.	1.6	36
12	Ultrastructural Analysis of Chikungunya Virus Dissemination from the Midgut of the Yellow Fever Mosquito, Aedes aegypti. Viruses, 2018, 10, 571.	1.5	35
13	Zika Virus Dissemination from the Midgut of Aedes aegypti is Facilitated by Bloodmeal-Mediated Structural Modification of the Midgut Basal Lamina. Viruses, 2019, 11, 1056.	1.5	32
14	Infection Pattern of Mayaro Virus in Aedes aegypti (Diptera: Culicidae) and Transmission Potential of the Virus in Mixed Infections With Chikungunya Virus. Journal of Medical Entomology, 2019, 56, 832-843.	0.9	30
15	Antiviral Effectors and Gene Drive Strategies for Mosquito Population Suppression or Replacement to Mitigate Arbovirus Transmission by Aedes aegypti. Insects, 2020, 11, 52.	1.0	26
16	Novel Genetic and Molecular Tools for the Investigation and Control of Dengue Virus Transmission by Mosquitoes. Current Tropical Medicine Reports, 2014, 1, 21-31.	1.6	21
17	Heterogeneity of midgut cells and their differential responses to blood meal ingestion by the mosquito, Aedes aegypti. Insect Biochemistry and Molecular Biology, 2020, 127, 103496.	1.2	20
18	Identification and initial characterization of matrix metalloproteinases in the yellow fever mosquito, <i>Aedes aegypti</i> . Insect Molecular Biology, 2017, 26, 113-126.	1.0	19

Alexander W E Franz

#	Article	IF	CITATIONS
19	Isolation of midgut escape mutants of two American genotype dengue 2 viruses from Aedes aegypti. Virology Journal, 2013, 10, 257.	1.4	18
20	The Antiviral Small-Interfering RNA Pathway Induces Zika Virus Resistance in Transgenic Aedes aegypti. Viruses, 2020, 12, 1231.	1.5	17
21	Quantitative Proteomic Analysis of Chikungunya Virus-Infected <i>Aedes aegypti</i> Reveals Proteome Modulations Indicative of Persistent Infection. Journal of Proteome Research, 2020, 19, 2443-2456.	1.8	15
22	Current Effector and Gene-Drive Developments to Engineer Arbovirus-Resistant <i>Aedes aegypti</i> (Diptera: Culicidae) for a Sustainable Population Replacement Strategy in the Field. Journal of Medical Entomology, 2021, 58, 1987-1996.	0.9	8
23	Disruption of dengue virus transmission by mosquitoes. Current Opinion in Insect Science, 2015, 8, 88-96.	2.2	7
24	Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti. BMC Genomics, 2022, 23, 119.	1.2	7
25	Starvation at the larval stage increases the vector competence of Aedes aegypti females for Zika virus. PLoS Neglected Tropical Diseases, 2021, 15, e0010003.	1.3	6
26	Controlling Dengue Virus Transmission in the Field with Genetically Modified Mosquitoes. ACS Symposium Series, 2009, , 123-141.	0.5	3
27	Intrathoracic Inoculation of Zika Virus in Aedes aegypti. Bio-protocol, 2021, 11, e4165.	0.2	2