
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3948678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10–heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions. Journal of Catalysis, 2014, 312, 152-169.	3.1	188
2	Relationship between active phase morphology and catalytic properties of the carbon–alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions. Journal of Catalysis, 2014, 309, 386-396.	3.1	150
3	Comparable investigation of unsupported MoS2 hydrodesulfurization catalysts prepared by different techniques: Advantages of support leaching method. Applied Catalysis B: Environmental, 2018, 238, 498-508.	10.8	65
4	Genesis of HDT catalysts prepared with the use of Co2Mo10HPA and cobalt citrate: Study of their gas and liquid phase sulfidation. Applied Catalysis B: Environmental, 2014, 158-159, 161-174.	10.8	60
5	Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts. Applied Catalysis B: Environmental, 2017, 205, 93-103.	10.8	58
6	CoMo/Al2O3 catalysts prepared on the basis of Co2Mo10-heteropolyacid and cobalt citrate: Effect of Co/Mo ratio. Fuel, 2012, 100, 24-33.	3.4	54
7	Investigation of co-promotion effect in NiCoMoS/Al2O3 catalysts based on Co2Mo10-heteropolyacid and nickel citrate. Catalysis Today, 2016, 271, 80-90.	2.2	54
8	Investigation of co-effect of 12-tungstophosphoric heteropolyacid, nickel citrate and carbon-coated alumina in preparation of NiW catalysts for HDS, HYD and HDN reactions. Applied Catalysis B: Environmental, 2015, 176-177, 374-384.	10.8	53
9	Investigation into the effect of the intermediate carbon carrier on the catalytic activity of the HDS catalysts prepared using heteropolycompounds. Catalysis Today, 2010, 149, 82-90.	2.2	51
10	NiWS/Al2O3 hydrotreating catalysts prepared with 12-tungstophosphoric heteropolyacid and nickel citrate: Effect of Ni/W ratio. Applied Catalysis A: General, 2015, 505, 456-466.	2.2	43
11	The use of CoMoS catalysts supported on carbon-coated alumina for hydrodeoxygenation of guaiacol and oleic acid. Catalysis Today, 2016, 271, 45-55.	2.2	42
12	Effect of the second metal of Anderson type heteropolycompounds on hydrogenation and hydrodesulphurization properties of XMo6(S)/Al2O3 and Ni3-XMo6(S)/Al2O3 catalysts. Applied Catalysis A: General, 2011, 393, 146-152.	2.2	37
13	Investigation of spillover effect in hydrotreating catalysts based on Co2Mo10â^' heteropolyanion and cobalt sulphide species. Applied Catalysis B: Environmental, 2015, 168-169, 396-407.	10.8	37
14	Relation between composition and morphology of K(Co)MoS active phase species and their performances in hydrotreating of model FCC gasoline. Catalysis Today, 2016, 271, 16-27.	2.2	36
15	Potassium effect in K-Ni(Co)PW/Al2O3 catalysts for selective hydrotreating of model FCC gasoline. Applied Catalysis B: Environmental, 2017, 203, 237-246.	10.8	34
16	MoW synergetic effect supported by HAADF for alumina based catalysts prepared from mixed SiMonW12-n heteropolyacids. Applied Catalysis B: Environmental, 2018, 224, 951-959.	10.8	33
17	On the dynamic model of promoted molybdenum sulfide catalysts. Catalysis Today, 2010, 149, 224-231.	2.2	32
18	Selective hydrotreating of FCC gasoline over KCoMoP/Al2O3 catalysts prepared with H3PMo12O40: Effect of metal loading. Fuel, 2016, 182, 632-639.	3.4	30

#	Article	IF	CITATIONS
19	Influence of the composition and morphology of nanosized transition metal sulfides prepared using the Anderson-type heteropoly compounds [X(OH)6Mo6O18] nâ^' (X = Co, Ni, Mn, Zn) and [Co2Mo10O38H4]6â^' on their catalytic properties. Kinetics and Catalysis, 2012, 53, 620-631.	0.3	29
20	Hydroprocessing catalysts based on transition metal sulfides prepared from Anderson and dimeric Co2Mo10-heteropolyanions. A review. Comptes Rendus Chimie, 2016, 19, 1276-1285.	0.2	27
21	Experimental and computational study of syngas and ethanol conversion mechanisms over K-modified transition metal sulfide catalysts. Journal of Catalysis, 2016, 344, 841-853.	3.1	26
22	Beneficial role of carbon in Co(Ni)MoS catalysts supported on carbon-coated alumina for co-hydrotreating of sunflower oil with straight-run gas oil. Catalysis Today, 2017, 292, 110-120.	2.2	25
23	A review of furfural derivatives as promising octane boosters. Russian Journal of Applied Chemistry, 2017, 90, 1402-1411.	0.1	20
24	Molecular approach to prepare mixed MoW alumina supported hydrotreatment catalysts using H ₄ SiMo _n W _{12â^'n} O ₄₀ heteropolyacids. Catalysis Science and Technology, 2018, 8, 5557-5572.	2.1	20
25	Co-hydrotreating of straight-run diesel fraction and vegetable oil on Co(Ni)-PMo/Al2O3 catalysts. Petroleum Chemistry, 2016, 56, 56-61.	0.4	19
26	CoMo/Al2O3 hydrotreating catalysts prepared from single Co2Mo10-heteropolyacid at extremely high metal loading. Catalysis Communications, 2019, 127, 51-57.	1.6	19
27	Enhancing the hydrodesulfurization of 4,6-dimethyldibenzothiophene through the use of mixed MoWS2 phase evidenced by HAADF. Catalysis Today, 2019, 329, 24-34.	2.2	19
28	Modern concepts on catalysis of hydroprocessing and synthesis of alcohols from syngas by transition metal sulfides. Russian Chemical Bulletin, 2014, 63, 332-345.	0.4	18
29	Comparable investigation of spillover and cobalt promoter effects in CoMoS/CoSx/SiO2 catalysts for selective hydrotreating of model FCC gasoline. Fuel Processing Technology, 2017, 156, 98-106.	3.7	18
30	Computational and experimental study of the second metal effect on the structure and properties of bi-metallic MeMoS-sites in transition metal sulfide catalysts. Catalysis Today, 2018, 305, 19-27.	2.2	18
31	Active phase transformation in industrial CoMo/Al2O3 hydrotreating catalyst during its deactivation and rejuvenation with organic chemicals treatment. Fuel Processing Technology, 2018, 173, 56-65.	3.7	17
32	CoMo Hydrotreating Catalysts Supported on Al2O3, SiO2 and SBA-15 Prepared from Single Co2Mo10-Heteropolyacid: In Search of Self-Promotion Effect. Catalysis Letters, 2018, 148, 2869-2879.	1.4	15
33	Assessment of the chemical stability of furfural derivatives and the mixtures as fuel components. Fuel, 2020, 271, 117594.	3.4	15
34	Activity of Co(Ni)MoS/Al2O3 catalysts, derived from cobalt(nickel) salts of H6[Co2Mo10O38H4], in hydrogenolysis of thiophene and hydrogen treatment of diesel fraction. Petroleum Chemistry, 2012, 52, 41-48.	0.4	14
35	Selective hydrodesulfurization of model fluid catalytic cracking gasoline over sulfided Al2O3-supported Anderson heteropolyoxomolybdate-based catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 615-627.	0.8	14
36	The effect of carrier in KCoMoS-supported catalysts for hydro-upgrading of model FCC gasoline. Applied Catalysis B: Environmental, 2019, 259, 118041.	10.8	13

PAVEL NIKULSHIN

#	Article	IF	CITATIONS
37	Toward HYD/DEC selectivity control in hydrodeoxygenation over supported and unsupported Co(Ni)-MoS2 catalysts. A key to effective dual-bed catalyst reactor for co-hydroprocessing of diesel and vegetable oil. Catalysis Today, 2020, 357, 556-564.	2.2	13
38	Genesis of active phase in MoW/Al2O3 hydrotreating catalysts monitored by HAADF and in situ QEXAFS combined to MCR-ALS analysis. Applied Catalysis B: Environmental, 2020, 269, 118766.	10.8	13
39	Influence of the nature of molybdenum compounds on the activity of Mo/γ-Al2O3 and NiMo/γ-Al2O3 hydrotreating catalysts. Kinetics and Catalysis, 2008, 49, 653-662.	0.3	12
40	Hydrogen spillover effect in the presence of CoS x /Al2O3 and bulk MoS2 in hydrodesulfurization, hydrodenitrogenation and hydrodeoxygenation. Russian Journal of Applied Chemistry, 2013, 86, 718-726.	0.1	12
41	Catalysts based on molybdenum and tungsten heteropoly compounds for the hydrotreatment of oil fractions. Catalysis in Industry, 2015, 7, 30-37.	0.3	12
42	Trimetallic Hydrotreating Catalysts CoMoW/Al2O3 and NiMoW/Al2O3 Prepared on the Basis of Mixed Mo-W Heteropolyacid: Difference in Synergistic Effects. Petroleum Chemistry, 2018, 58, 1198-1205.	0.4	12
43	The effect of the Mo/W ratio on the catalytic properties of alumina supported hydrotreating catalysts prepared from mixed SiMo6W6 and SiMo9W3 heteropolyacids. Catalysis Today, 2021, 377, 100-113.	2.2	12
44	Hydrotreating of Middle-Distillate Fraction on Sulfide Catalysts Containing Crystalline Porous Aluminosilicates. Petroleum Chemistry, 2017, 57, 1151-1155.	0.4	11
45	Influence of mesostructured alumina on the morphology of the active phase in NiWS/Al2O3 catalysts and their activity in hydrotreating of SRGO and VGO. Fuel Processing Technology, 2018, 181, 44-52.	3.7	11
46	Effect of the composition and acidity of supported sulfide catalysts on their activity and deactivation in guaiacol hydrodeoxygenation. Catalysis in Industry, 2014, 6, 338-347.	0.3	10
47	Thiophene hydrodesulfurization and diesel fuel hydrorefining activities of XMo6(S)/γ-Al2O3 and Ni-XMo6(S)/γ-Al2O3 (X = Al, Ga, In, Fe, Co, and Ni) catalysts. Kinetics and Catalysis, 2009, 50, 220-227.	0.3	9
48	Furfural Derivatives as Fuel Components. Chemistry and Technology of Fuels and Oils, 2020, 55, 720-725.	0.2	9
49	Furfural Dipropyl Acetal as a New Fuel Additive: Synthesis and Properties. Russian Journal of Applied Chemistry, 2018, 91, 1968-1973.	0.1	8
50	Effect of carrier properties on the activity of supported KCoMoS catalysts in the synthesis of alcohol from syngas. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 301-314.	0.8	8
51	Study of hydrotreating performance of trimetallic NiMoW/Al2O3 catalysts prepared from mixed MoW Keggin heteropolyanions with various Mo/W ratios. Journal of Catalysis, 2021, 403, 141-159.	3.1	8
52	Supercritical fluid CO2-extraction regeneration of nickel–molybdenum catalyst for hydrotreatment. Catalysis in Industry, 2017, 9, 31-38.	0.3	7
53	Trimetallic NiMoW/Al2O3 hydrotreating catalyst based on H4SiMo3W9O40 mixed heteropoly acid. Russian Journal of Applied Chemistry, 2017, 90, 1122-1129.	0.1	7
54	Selective hydrotreating of cat-cracked gasoline over a K–CoMoS/Al2O3 catalyst. Kinetics and Catalysis, 2015, 56, 747-757.	0.3	6

#	Article	IF	CITATIONS
55	Promoter nature effect on the sensitivity of Ni–Mo/Al2O3, Co–Mo/Al2O3, and Ni–Co–Mo/Al2O3 catalysts to dodecanoic acid in the co-hydrotreating of dibenzothiophene and naphthalene. Kinetics and Catalysis, 2017, 58, 463-470.	0.3	6
56	Ni-Based Nanoparticles on Mesoporous Silica Supports for Single-Stage Arsenic and Chlorine Removal during Diesel Fraction Hydrotreating. ACS Omega, 2020, 5, 6611-6618.	1.6	6
57	Hydrodeoxygenation of glycerol into propanols over a Ni/WO3–TiO2 catalyst. Mendeleev Communications, 2020, 30, 119-120.	0.6	6
58	Synthesis of Higher Alcohols from Syngas over a K-Modified CoMoS Catalyst Supported on Novel Powder and Fiber Commercial Activated Carbons. ACS Omega, 2022, 7, 21346-21356.	1.6	6
59	Use of (NH4)4[Ni(OH)6Mo6O18]·nH2O heteropoly compound in fabrication of sulfide catalysts for hydropurification of diesel fractions. Russian Journal of Applied Chemistry, 2009, 82, 86-93.	0.1	5
60	Effect of Quinoline on Hydrodesulfurization and Hydrogenation on Bi- and Trimetallic NiMo(W)/Al2O3 Hydrotreating Catalysts. Russian Journal of Applied Chemistry, 2019, 92, 105-112.	0.1	5
61	Influence of the Pore Structure of a Catalyst for Demetallization of Petroleum Feedstock on the Process Results. Russian Journal of Applied Chemistry, 2019, 92, 1392-1398.	0.1	5
62	Hydrogen treatment of vacuum gas oil on sulfide catalysts: Influence of composition and porous structure. Petroleum Chemistry, 2014, 54, 431-437.	0.4	4
63	Inhibiting HDS and HYD reactions with quinoline on Co(Ni)–PMo(W)/Al2O3 catalysts: Effect of active phase composition on stability in the hydrotreatment of a model petroleum raw material. Catalysis in Industry, 2017, 9, 146-155.	0.3	4
64	Mono- and Bimetallic Mo(W)S2/Al2O3 and Mo(W)S2/SBA-15 Hydrotreating Catalysts Based on SiMo12 and SiW12 Heteropoly Acids. Petroleum Chemistry, 2017, 57, 1058-1064.	0.4	4
65	Application of Heteropolyacid H4SiMo3W9O40 for the Preparation of Bimetallic MoWS2/Al2O3 Hydrotreatment Catalysts. Kinetics and Catalysis, 2017, 58, 825-832.	0.3	4
66	Hydrodeoxygenation of Oleic Acid on Supported and Unsupported MoS2 and NiMoS2 Catalysts for the Production of Green Diesel Fuel. Chemistry and Technology of Fuels and Oils, 2019, 54, 686-697.	0.2	4
67	Use of Modifying Additives in Solvent Dewaxing. Chemistry and Technology of Fuels and Oils, 2020, 56, 535-549.	0.2	4
68	Production of Low -Sulfur Marine Fuel. Chemistry and Technology of Fuels and Oils, 2020, 55, 704-711.	0.2	4
69	Bulk hydrotreating MonW12-nS2 catalysts based on SiMonW12-n heteropolyacids prepared by alumina elimination method. Catalysis Today, 2021, 377, 26-37.	2.2	4
70	Hydrotreating of Vacuum Gas Oil on NiW/Al2O3 Catalysts Prepared with the Use of Chelating Agents. Petroleum Chemistry, 2017, 57, 1161-1164.	0.4	3
71	Effect of Support of Ð¡Ð¾ĐœÐ¾S Catalysts on Hydrodeoxygenation of Guaiacol as a Model Compound of Biopetroleum. Russian Journal of Applied Chemistry, 2018, 91, 270-279.	0.1	3
72	Evaluation of the Hydrodesulfurization Activity in Development of Catalysts for Demetallization of Heavy Petroleum Feedstock. Russian Journal of Applied Chemistry, 2018, 91, 2046-2051.	0.1	3

#	Article	IF	CITATIONS
73	Recent Advances in Biodegradable Lubricating Materials (A Review). Petroleum Chemistry, 2021, 61, 697-710.	0.4	3
74	Prospects for the Use of Furfural Derivatives in Gasoline. Chemistry and Technology of Fuels and Oils, 2018, 53, 830-834.	0.2	2
75	NiWS/Al2O3 Diesel Fraction Deep Hydrotreating Catalyst Synthesized Using Mesostructured Aluminum Hydroxide. Petroleum Chemistry, 2018, 58, 1186-1191.	0.4	2
76	Production of Low-Sulfur High-Viscosity Marine Fuel by Hydrotreatment of Oil Residues. Chemistry and Technology of Fuels and Oils, 2019, 54, 669-675.	0.2	2
77	Recovery of the diesel fraction of oil sludge by engaging in the deep hydrotreating process for manufacturing ultraclean diesel fuels. Petroleum Chemistry, 2013, 53, 164-170.	0.4	1
78	Regeneration of CoMo Sulfide Exhaustive Hydrofining Catalysts Using Organic Reagents. Chemistry and Technology of Fuels and Oils, 2017, 53, 654-665.	0.2	1
79	\$\$ mathrm{NiMo}/{mathrm{WO}}_4^{2-}/{mathrm{ZrO}}_2 \$\$,-Zeolite-Containing Hydrodearomatization Catalyst for Improving the Operating and Environmental Characteristics of Diesel Fuel. Chemistry and Technology of Fuels and Oils, 2019, 55, 389-394.	0.2	1
80	Hydrotreating of Straight-Run Diesel Fraction over Mixed NiMoWS/Al2O3 Sulfide Catalysts. Petroleum Chemistry, 2019, 59, 529-534.	0.4	1
81	Effect of the Texture and Acidity of a Zeolite-Containing Support on the Activity and Selectivity of NiMoS Catalysts in Hydrogenation and Hydrocracking Reactions. Petroleum Chemistry, 2019, 59, 511-517.	0.4	1
82	Influence of Oxygen-Containing Compounds on Conversion and Selectivity of Dibenzotiophene and Naphthaline on Bulk and Supplied Co(Ni)MoS2 Catalysts. Russian Journal of Applied Chemistry, 2019, 92, 1761-1771.	0.1	1
83	Inhibiting Effect of Quinoline on the Hydroconversion of Dibenzothiophene and Naphthalene on Trimetallic NiCoMoS Catalysts Supported on Al2O3, SiO2, and SBA-15. Russian Journal of Applied Chemistry, 2019, 92, 1789-1796.	0.1	1
84	Highly Active Bulk Mo(W)S2 Hydrotreating Catalysts Synthesized by Etching out of the Carrier from Supported Mono- and Bimetallic Sulfides. Petroleum Chemistry, 2019, 59, S53-S59.	0.4	1
85	Activity of Mo(W)S2/SBA-15 Catalysts Synthesized from SiMoW Heteropoly Acids in 4,6-Dimethyldibenzothiophene Hydrodesulfurization. Petroleum Chemistry, 2019, 59, 1293-1299.	0.4	1
86	Hydrovisbreaking of Mazut Heavy Oil on Inert Packing with Cellular Structure. Chemistry and Technology of Fuels and Oils, 2020, 56, 333-340.	0.2	1
87	Furfuralacetal Compositions as Complex Additives to Diesel Fuels. Chemistry and Technology of Fuels and Oils, 2020, 55, 726-732.	0.2	1
88	Computer-Aided Modeling and Additive Manufacturing of Promising Protective Layer Materials for Catalytic Reactors. Petroleum Chemistry, 2021, 61, 1207-1216.	0.4	1
89	Reactive Adsorption Desulfurization of Olefin-Containing Feedstocks over Ni/ZnO–Al2O3 Adsorbents: Effects of ZnO–Al2O3 Support Composition. Petroleum Chemistry, 0, , .	0.4	1
90	Crystal structure of pentafluoroacetanilide. Journal of Structural Chemistry, 2015, 56, 1201-1204.	0.3	0

#	Article	IF	CITATIONS
91	Pyrolysis of Vegetal Feedstock – Feasibility of Producing Motor Fuel Components. Chemistry and Technology of Fuels and Oils, 2018, 53, 817-822.	0.2	0
92	Effect of Carbonization on CoMoS Catalyst supports in the Hydrodeoxygenation of Guaiacol as a Model Bio-Oil Compound. Chemistry and Technology of Fuels and Oils, 2019, 54, 698-711.	0.2	0
93	New Bimetallic Hydrotreating Catalyst MoWS2 Based on Heteropoly Acid SiMo3W9 and Mesostructured Silicate COK-12. Petroleum Chemistry, 2020, 60, 616-621.	0.4	0
94	The Current State of Development of Greases. Chemistry and Technology of Fuels and Oils, 2021, 57, 279.	0.2	0