
Massimiliano Corso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3948388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype. BMC Plant Biology, 2014, 14, 99.	1.6	254
2	Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of Experimental Botany, 2015, 66, 5739-5752.	2.4	133
3	Adaptation to high zinc depends on distinct mechanisms in metallicolous populations of <i>Arabidopsis halleri</i> . New Phytologist, 2018, 218, 269-282.	3.5	90
4	Grape berry ripening delay induced by a pre-véraison NAA treatment is paralleled by a shift in the expression pattern of auxin- and ethylene-related genes. BMC Plant Biology, 2012, 12, 185.	1.6	88
5	Contrasting cadmium resistance strategies in two metallicolous populations of <i>Arabidopsis halleri</i> . New Phytologist, 2018, 218, 283-297.	3.5	88
6	Grapevine Rootstocks Differentially Affect the Rate of Ripening and Modulate Auxin-Related Genes in Cabernet Sauvignon Berries. Frontiers in Plant Science, 2016, 7, 69.	1.7	67
7	Toxic Effects of Cd and Zn on the Photosynthetic Apparatus of the Arabidopsis halleri and Arabidopsis arenosa Pseudo-Metallophytes. Frontiers in Plant Science, 2019, 10, 748.	1.7	65
8	Specialized phenolic compounds in seeds: structures, functions, and regulations. Plant Science, 2020, 296, 110471.	1.7	62
9	Endoplasmic reticulum-localized CCX2 is required for osmotolerance by regulating ER and cytosolic Ca ²⁺ dynamics in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3966-3971.	3.3	61
10	A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Frontiers in Plant Science, 2015, 6, 417.	1.7	55
11	Grapevine rootstock effects on abiotic stress tolerance. Plant Science Today, 2014, 1, 108-113.	0.4	52
12	CAX1 suppresses Cdâ€induced generation of reactive oxygen species in <i>Arabidopsis halleri</i> . Plant, Cell and Environment, 2018, 41, 2435-2448.	2.8	39
13	Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants. Metallomics, 2020, 12, 840-859.	1.0	37
14	LPMO-oxidized cellulose oligosaccharides evoke immunity in Arabidopsis conferring resistance towards necrotrophic fungus B. cinerea. Communications Biology, 2021, 4, 727.	2.0	33
15	Transcriptional Characterization of a Widely-Used Grapevine Rootstock Genotype under Different Iron-Limited Conditions. Frontiers in Plant Science, 2016, 7, 1994.	1.7	21
16	Transcriptomic analysis supports the role of CATION EXCHANGER 1 in cellular homeostasis and oxidative stress limitation during cadmium stress. Plant Signaling and Behavior, 2016, 11, e1183861.	1.2	18
17	Sensorial, biochemical and molecular changes in Raboso Piave grape berries applying "Double Maturation Raisonnée―and late harvest techniques. Plant Science, 2013, 208, 50-57.	1.7	17
18	Adaptation of <i>Arabidopsis halleri</i> to extreme metal pollution through limited metal accumulation involves changes in cell wall composition and metal homeostasis. New Phytologist, 2021, 230, 669-682.	3.5	17

MASSIMILIANO CORSO

#	Article	IF	CITATIONS
19	Different strategies of Cd tolerance and accumulation in <i>Arabidopsis halleri</i> and <scp><i>Arabidopsis arenosa</i></scp> . Plant, Cell and Environment, 2020, 43, 3002-3019.	2.8	16
20	Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different <i>Camelina sativa</i> genotypes. Plant Journal, 2022, 110, 147-165.	2.8	9
21	Camelina [Camelina sativa (L.) Crantz] seeds as a multi-purpose feedstock for bio-based applications. Industrial Crops and Products, 2022, 182, 114944.	2.5	9
22	Exploiting Genomic Features to Improve the Prediction of Transcription Factor-Binding Sites in Plants. Plant and Cell Physiology, 2022, 63, 1457-1473.	1.5	7
23	Protein lysine methylation contributes to modulating the response of sensitive and tolerant Arabidopsis species to cadmium stress. Plant, Cell and Environment, 2020, 43, 760-774.	2.8	6
24	Specialized metabolites in seeds. Advances in Botanical Research, 2021, , 35-70.	0.5	6
25	Transcriptome pathways in leaf and root of grapevine genotypes with contrasting drought tolerance. Acta Horticulturae, 2016, , 161-168.	0.1	5
26	EFFECT OF COOL STORAGE DURATION ON RIPENING INITIATION OF 'ANGELYS®' PEAR FRUIT. Acta Horticulturae, 2015, , 129-136.	0.1	3
27	Comparative analysis of genes involved in iron homeostasis in grapevine rootstocks characterized by	0.1	1