Bruce D Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3948141/publications.pdf

Version: 2024-02-01

59 papers 4,556 citations

32 h-index 56 g-index

59 all docs 59 docs citations

59 times ranked

5516 citing authors

#	Article	IF	CITATIONS
1	Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature, 1996, 383, 716-719.	27.8	747
2	Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: Developmental culling and cancer. Cancer Cell, 2005, 8, 155-167.	16.8	494
3	The kinesin KIF1B \hat{i}^2 acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes and Development, 2008, 22, 884-893.	5.9	293
4	Neurotrophins Live or Let Die: Does p75NTR Decide?. Neuron, 1997, 18, 187-190.	8.1	202
5	Ligand-Dependent Cleavage of the P75 Neurotrophin Receptor Is Necessary for NRIF Nuclear Translocation and Apoptosis in Sympathetic Neurons. Neuron, 2006, 50, 219-232.	8.1	172
6	Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nature Neuroscience, 2009, 12, 1534-1541.	14.8	157
7	(R)-Profens are substrate-selective inhibitors of endocannabinoid oxygenation by COX-2. Nature Chemical Biology, 2011, 7, 803-809.	8.0	157
8	Activation of the transcription factor NF-κB in Schwann cells is required for peripheral myelin formation. Nature Neuroscience, 2003, 6, 161-167.	14.8	156
9	The p75 neurotrophin receptor: multiple interactors and numerous functions. Progress in Brain Research, 2004, 146, 25-39.	1.4	142
10	Activation of the p75 Neurotrophin Receptor through Conformational Rearrangement of Disulphide-Linked Receptor Dimers. Neuron, 2009, 62, 72-83.	8.1	134
11	Induction of Proneurotrophins and Activation of p75 ^{NTR} -Mediated Apoptosis via Neurotrophin Receptor-Interacting Factor in Hippocampal Neurons after Seizures. Journal of Neuroscience, 2008, 28, 9870-9879.	3.6	130
12	p75 Neurotrophin Receptor-mediated Apoptosis in Sympathetic Neurons Involves a Biphasic Activation of JNK and Up-regulation of Tumor Necrosis Factor-α-converting Enzyme/ADAM17. Journal of Biological Chemistry, 2010, 285, 20358-20368.	3.4	112
13	Junctional Adhesion Molecule-A Is Required for Hematogenous Dissemination of Reovirus. Cell Host and Microbe, 2009, 5, 59-71.	11.0	105
14	Nerve Growth Factor Activation of Nuclear Factor κB through Its p75 Receptor Is an Anti-apoptotic Signal in RN22 Schwannoma Cells. Journal of Biological Chemistry, 2000, 275, 7558-7565.	3.4	99
15	Neurotrophin Signaling through the p75 Receptor Is Deficient in traf6-/- Mice. Journal of Neuroscience, 2004, 24, 10521-10529.	3.6	91
16	TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. EMBO Journal, 2005, 24, 3859-3868.	7.8	82
17	Protein Kinase A-Induced Phosphorylation of the p65 Subunit of Nuclear Factor-ÂB Promotes Schwann Cell Differentiation into a Myelinating Phenotype. Journal of Neuroscience, 2008, 28, 3738-3746.	3.6	76
18	Jedi-1 and MEGF10 Signal Engulfment of Apoptotic Neurons through the Tyrosine Kinase Syk. Journal of Neuroscience, 2012, 32, 13022-13031.	3.6	74

#	Article	IF	Citations
19	Neurotrophin Receptor Interacting Factor (NRIF) Is an Essential Mediator of Apoptotic Signaling by the p75 Neurotrophin Receptor. Journal of Biological Chemistry, 2005, 280, 13801-13808.	3.4	67
20	Coupling of the p75 Neurotrophin Receptor to Sphingolipid Signalinga. Annals of the New York Academy of Sciences, 1998, 845, 32-45.	3.8	61
21	p75 Neurotrophin Receptor Cleavage by α- and γ-Secretases Is Required for Neurotrophin-mediated Proliferation of Brain Tumor-initiating Cells. Journal of Biological Chemistry, 2014, 289, 8067-8085.	3.4	57
22	Ligand-independent signaling by disulfide-crosslinked dimers of the p75 neurotrophin receptor. Journal of Cell Science, 2009, 122, 3351-3357.	2.0	54
23	p75 neurotrophin receptor evades the endolysosomal route, favouring multivesicular bodies specialised for exosomal release in neuronal cells. Journal of Cell Science, 2014, 127, 1966-79.	2.0	54
24	A Role for the p75 Neurotrophin Receptor in Axonal Degeneration and Apoptosis Induced by Oxidative Stress. Journal of Biological Chemistry, 2014, 289, 21205-21216.	3.4	54
25	Conformational Stability and Pathogenic Misfolding of the Integral Membrane Protein PMP22. Journal of the American Chemical Society, 2015, 137, 8758-8768.	13.7	54
26	p75 Neurotrophin receptor signaling. Journal of Neuroscience Research, 2000, 61, 237-243.	2.9	52
27	Selectivity of ligand binding to opioid receptors in brain membranes from the rat, monkey and guinea pig. European Journal of Pharmacology, 1988, 148, 343-351.	3.5	50
28	Mutation analysis of HIF prolyl hydroxylases (PHD/EGLN) in individuals with features of phaeochromocytoma and renal cell carcinoma susceptibility. Endocrine-Related Cancer, 2010, 18, 73-83.	3.1	49
29	Abnormal junctions and permeability of myelin in PMP22â€deficient nerves. Annals of Neurology, 2014, 75, 255-265.	5.3	49
30	NF- \hat{l}° B Forms a Complex with the Chromatin Remodeler BRG1 to Regulate Schwann Cell Differentiation. Journal of Neuroscience, 2013, 33, 2388-2397.	3.6	46
31	Brain-derived Neurotrophic Factor (BDNF) Induces Polarized Signaling of Small GTPase (Rac1) Protein at the Onset of Schwann Cell Myelination through Partitioning-defective 3 (Par3) Protein. Journal of Biological Chemistry, 2012, 287, 1600-1608.	3.4	40
32	A Functional Interaction between the p75 Neurotrophin Receptor Interacting Factors, TRAF6 and NRIF. Journal of Biological Chemistry, 2004, 279, 16646-16656.	3.4	39
33	Reversible Folding of Human Peripheral Myelin Protein 22, a Tetraspan Membrane Protein. Biochemistry, 2013, 52, 3229-3241.	2.5	36
34	A Chimeric Egfr Protein Reporter Mouse Reveals Egfr Localization and Trafficking InÂVivo. Cell Reports, 2017, 19, 1257-1267.	6.4	36
35	Axonal Neuregulin 1 Type III Activates NF- $\hat{\mathbb{I}}^2$ B in Schwann Cells during Myelin Formation. Journal of Biological Chemistry, 2010, 285, 16614-16622.	3.4	32
36	A novel role for PTEN in the inhibition of neurite outgrowth by myelin-associated glycoprotein in cortical neurons. Molecular and Cellular Neurosciences, 2011, 46, 235-244.	2.2	28

#	Article	IF	Citations
37	Reovirus uses macropinocytosis-mediated entry and fast axonal transport to infect neurons. PLoS Pathogens, 2020, 16, e1008380.	4.7	28
38	Integrin $\hat{1}\pm3\hat{1}^21$ regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Molecular Biology of the Cell, 2015, 26, 1857-1874.	2.1	27
39	Myelin-Associated Glycoprotein Inhibits Schwann Cell Migration and Induces Their Death. Journal of Neuroscience, 2017, 37, 5885-5899.	3.6	23
40	Retrograde Degenerative Signaling Mediated by the p75 Neurotrophin Receptor Requires p150Glued Deacetylation by Axonal HDAC1. Developmental Cell, 2018, 46, 376-387.e7.	7.0	23
41	The adaptor protein GULP promotes Jedi-1–mediated phagocytosis through a clathrin-dependent mechanism. Molecular Biology of the Cell, 2014, 25, 1925-1936.	2.1	18
42	Direct relationship between increased expression and mistrafficking of the Charcot–Marie–Tooth–associated protein PMP22. Journal of Biological Chemistry, 2020, 295, 11963-11970.	3.4	17
43	Neurotrophin Responsiveness of Sympathetic Neurons Is Regulated by Rapid Mobilization of the p75 Receptor to the Cell Surface through TrkA Activation of Arf6. Journal of Neuroscience, 2018, 38, 5606-5619.	3.6	16
44	Expression of MYCN in Multipotent Sympathoadrenal Progenitors Induces Proliferation and Neural Differentiation, but Is Not Sufficient for Tumorigenesis. PLoS ONE, 2015, 10, e0133897.	2.5	16
45	Peripheral myelin protein 22 modulates store-operated calcium channel activity, providing insights into Charcot-Marie-Tooth disease etiology. Journal of Biological Chemistry, 2019, 294, 12054-12065.	3.4	15
46	Exportin 1 Inhibition Induces Nerve Growth Factor Receptor Expression to Inhibit the NF-κB Pathway in Preclinical Models of Pediatric High-Grade Glioma. Molecular Cancer Therapeutics, 2020, 19, 540-551.	4.1	14
47	Retrograde apoptotic signaling by the p75 neurotrophin receptor. Neuronal Signaling, 2017, 1, NS20160007.	3.2	13
48	Opioid Signal Transduction in Intact and Fragmented SH-SY5Y Neural Cells. Journal of Neurochemistry, 1992, 58, 1611-1619.	3.9	11
49	NRIF is a Regulator of Neuronal Cholesterol Biosynthesis Genes. Journal of Molecular Neuroscience, 2009, 38, 152-158.	2.3	10
50	The p75 neurotrophin receptor, semaphorins, and sympathetic traffic in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1633-H1636.	3.2	9
51	Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death. Journal of Speech, Language, and Hearing Research, 2017, 60, 1264-1272.	1.6	9
52	Longâ€distance regressive signaling in neural development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 2021, 10, e382.	5.9	8
53	Metabolic Control of Sensory Neuron Survival by the p75 Neurotrophin Receptor in Schwann Cells. Journal of Neuroscience, 2021, 41, 8710-8724.	3.6	6
54	Jedi-1 deficiency increases sensory neuron excitability through a non-cell autonomous mechanism. Scientific Reports, 2020, 10, 1300.	3.3	5

Bruce D Carter

#	Article	IF	CITATIONS
55	A Bexâ€cycle built for two. EMBO Reports, 2006, 7, 382-384.	4.5	4
56	Myelin Avoids the JAM. Neuron, 2016, 91, 713-716.	8.1	2
57	Receptors Neurotrophin Receptor Signaling. , 2021, , 187-200.		1
58	Degeneration keeps axons on the straight and narrow. Nature Neuroscience, 2010, 13, 526-528.	14.8	0
59	Eaters of the dead: Glial precursors clear neuron corpses during development. Cell Cycle, 2010, 9, 1867-1868.	2.6	0