Yue Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3947662/publications.pdf

Version: 2024-02-01

759233 752698 23 416 12 20 citations h-index g-index papers 24 24 24 464 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry, 2018, 122, 174-182.	4.6	57
2	Humidity- and Water-Responsive Torsional and Contractile Lotus Fiber Yarn Artificial Muscles. ACS Applied Materials & Distriction (2021), 13, 6642-6649.	8.0	47
3	Carbon felt-based biocatalytic enzymatic flow-through detectors: Chemical modification of tyrosinase onto amino-functionalized carbon felt using various coupling reagents. Talanta, 2009, 79, 1135-1141.	5.5	36
4	Acridine orange-induced signal enhancement effect of tyrosinase-immobilized carbon-felt-based flow biosensor for highly sensitive detection of monophenolic compounds. Analytical and Bioanalytical Chemistry, 2011, 399, 1151-1162.	3.7	35
5	Uricase-adsorbed carbon-felt reactor coupled with a peroxidase-modified carbon-felt-based H2O2 detector for highly sensitive amperometric flow determination of uric acid. Journal of Pharmaceutical and Biomedical Analysis, 2012, 57, 125-132.	2.8	24
6	Electropolymerized poly(Toluidine Blue)-modified carbon felt for highly sensitive amperometric determination of NADH in flow injection analysis. Journal of Environmental Sciences, 2011, 23, 1050-1056.	6.1	22
7	Carbon felt-based bioelectrocatalytic flow-through detectors: Highly sensitive amperometric determination of H2O2 based on a direct electrochemistry of covalently modified horseradish peroxidase using cyanuric chloride as a linking agent. Sensors and Actuators B: Chemical, 2011, 155, 722-729.	7.8	21
8	Tyrosinase-modified carbon felt-based flow-biosensors: The role of ultra-sonication in shortening the enzyme immobilization time and improving the sensitivity for p-chlorophenol. Journal of Environmental Sciences, 2011, 23, 1038-1043.	6.1	19
9	Hemin-adsorbed carbon felt for sensitive and rapid flow-amperometric detection of dissolved oxygen. Mikrochimica Acta, 2013, 180, 1295-1302.	5.0	19
10	Carbon Black-Carbon Nanotube Co-Doped Polyimide Sensors for Simultaneous Determination of Ascorbic Acid, Uric Acid, and Dopamine. Materials, 2018, 11, 1691.	2.9	19
11	Carbon-felt-based Bioelectrocatalytic Flow-detectors: Optimization of the Adsorption Conditions of Horseradish Peroxidase and Thionine onto Carbon-felt for Highly Sensitive Amperometric Determination of H2O2. Analytical Sciences, 2011, 27, 401.	1.6	15
12	Methylene Blue-Induced Stabilization Effect of Adsorbed Glucose Oxidase on a Carbon-Felt Surface for Bioelectrocatalytic Activity. Journal of the Electrochemical Society, 2012, 159, F110-F118.	2.9	15
13	Application of pyrite and chalcopyrite as sensor electrode for amperometric detection and measurement of hydrogen peroxide. RSC Advances, 2018, 8, 5013-5019.	3.6	13
14	Highly sensitive flow-biosensor for toxic phenolic compounds using tyrosinase and acridine orange-adsorbed carbon felt. Journal of Environmental Sciences, 2009, 21, S100-S104.	6.1	12
15	Electrochemical Sensing Platform Based on Lotus Stemâ€derived Porous Carbon for the Simultaneous Determination of Hydroquinone, Catechol and Nitrite. Electroanalysis, 2021, 33, 956-963.	2.9	12
16	Natural Molybdenite- and Tyrosinase-Based Amperometric Catechol Biosensor Using Acridine Orange as a Glue, Anchor, and Stabilizer for the Adsorbed Tyrosinase. ACS Omega, 2021, 6, 13719-13727.	3.5	12
17	Electrochemical evaluation of sulfide mineral modified glassy carbon electrode as novel mediated glucose biosensor. Journal of Electroanalytical Chemistry, 2021, 894, 115357.	3.8	9
18	A Glassy Carbon Electrode Modified with Molybdenite and Ag Nanoparticle Composite for Selectively Sensing of Ascorbic Acid. Analytical Sciences, 2019, 35, 733-738.	1.6	8

YUE WANG

#	Article	IF	CITATION
19	A Novel Flexible Electrochemical Ascorbic Acid Sensor Constructed by Ferrocene Methanol doped Multiâ€walled Carbon Nanotube Yarn. Electroanalysis, 2021, 33, 2445-2451.	2.9	8
20	A Sensitive Electrochemical Ascorbic Acid Sensor Using Glassy Carbon Electrode Modified by Molybdenite with Electrodeposited Methylene Blue. Applied Biochemistry and Biotechnology, 2020, 191, 1533-1544.	2.9	6
21	Popcornâ€Derived Porous Carbon Based Electrochemical Sensor for Simultaneous Determination of Hydroquinone, Catechol and Nitrite. ChemistrySelect, 2022, 7, .	1.5	5
22	Molten-salt-composite of Pyrite and Silver Nanoparticle as Electrocatalyst for Hydrogen Peroxide Sensing. Analytical Sciences, 2021, 37, 1589-1595.	1.6	2
23	Electrochemical Flow Injection Analysis Biosensors Using Biomolecules-immobilized Carbon Felt. Bunseki Kagaku, 2022, 71, 13-24.	0.2	O