
Osumanu Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3947266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil Nutrient Retention and pH Buffering Capacity Are Enhanced by Calciprill and Sodium Silicate. Agronomy, 2022, 12, 219.	3.0	27
2	Rejected Sago Starch as a Coating Material to Mitigate Urea-Nitrogen Emission. Agronomy, 2022, 12, 941.	3.0	1
3	Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia. Sustainability, 2021, 13, 1014.	3.2	2
4	Use of organic soil amendments to improve soil health and yield of immature pepper (Piper nigrum L.). Organic Agriculture, 2021, 11, 145-161.	2.4	3
5	Disease prevalence and molecular characterisation of Rigidoporus microporus associated with white root rot disease of rubber tree (Hevea brasiliensis) in Malaysia. Journal of Rubber Research (Kuala) Tj ETQq1 1 C).784 61 14 rg	BT \$Overloc
6	Rice Husk Compost Production and Use in Mitigating Ammonia Volatilization from Urea. Sustainability, 2021, 13, 1832.	3.2	14
7	Nitrogen, Phosphorus, and Potassium Adsorption and Desorption Improvement and Soil Buffering Capacity Using Clinoptilolite Zeolite. Agronomy, 2021, 11, 379.	3.0	16
8	Nitrous Oxide Emissions in Pineapple Cultivation on a Tropical Peat Soil. Sustainability, 2021, 13, 4928.	3.2	0
9	Chemical and Biological Characteristics of Organic Amendments Produced from Selected Agro-Wastes with Potential for Sustaining Soil Health: A Laboratory Assessment. Sustainability, 2021, 13, 4919.	3.2	10
10	Biochar Tablets with and without Embedded Fertilizer on the Soil Chemical Characteristics and Nutrient Use Efficiency of Zea mays. Sustainability, 2021, 13, 4878.	3.2	2
11	Dielectric response of nitrogen in soil amended with chicken litter biochar and urea under Oryza sativa L. cultivation. Scientific Reports, 2021, 11, 12545.	3.3	2
12	Murdannia loriformis: A Review of Ethnomedicinal Uses, Phytochemistry, Pharmacology, Contemporary Application, and Toxicology. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-15.	1.2	2
13	Effects of Organic Amendments Produced from Agro-Wastes on Sandy Soil Properties and Black Pepper Morpho-Physiology and Yield. Agronomy, 2021, 11, 1738.	3.0	0
14	Combined Use of Charcoal, Sago Bark Ash, and Urea Mitigate Soil Acidity and Aluminium Toxicity. Agronomy, 2021, 11, 1799.	3.0	7
15	Soil Nitrogen Sorption Using Charcoal and Wood Ash. Agronomy, 2021, 11, 1801.	3.0	10
16	Mitigating Potassium Leaching from Muriate of Potash in a Tropical Peat Soil Using Clinoptilolite Zeolite, Forest Litter Compost, and Chicken Litter Biochar. Agronomy, 2021, 11, 1900.	3.0	2
17	Phylogenetic Analysis and Genetic Diversity of Colletotrichum falcatum Isolates Causing Sugarcane Red Rot Disease in Bangladesh. Biology, 2021, 10, 862.	2.8	9
18	Optimisation of Charcoal and Sago (Metroxylon sagu) Bark Ash to Improve Phosphorus Availability in Acidic Soils. Agronomy, 2021, 11, 1803.	3.0	2

Osumanu Ahmed

#	Article	IF	CITATIONS
19	Nutrient Release and Ammonia Volatilization from Biochar-Blended Fertilizer with and without Densification. Agronomy, 2021, 11, 2082.	3.0	3
20	Combined Use of Calciprill and Sodium Silicate Improves Chemical Properties of Low-pH Soil. Agronomy, 2021, 11, 2070.	3.0	1
21	Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy, 2021, 11, 2010.	3.0	68
22	Co-Application of Charcoal and Wood Ash to Improve Potassium Availability in Tropical Mineral Acid Soils. Agronomy, 2021, 11, 2081.	3.0	10
23	Acid Soils Nitrogen Leaching and Buffering Capacity Mitigation Using Charcoal and Sago Bark Ash. Sustainability, 2021, 13, 11808.	3.2	4
24	Amending Potassic Fertilizer with Charcoal and Sago (Metroxylon sagu) Bark Ash to Improve Potassium Availability in a Tropical Acid Soil. Agronomy, 2021, 11, 2222.	3.0	0
25	Charcoal and Sago Bark Ash on pH Buffering Capacity and Phosphorus Leaching. Agronomy, 2021, 11, 2223.	3.0	3
26	Decay of Rhizophora apiculata (Blume) and Xylocarpus granatum (Koenig) detrital sources in the Sarawak Mangrove, Malaysia. Journal of Forestry Research, 2020, 31, 613-623.	3.6	8
27	Improving Nitrogen Availability on a Tropical Peat Soil Cultivated with Ananas comosus L. Merr. Using Pineapple Residue Ash. Journal of Soil Science and Plant Nutrition, 2020, 20, 657-672.	3.4	5
28	Clinoptilolite Zeolite on Tropical Peat Soils Nutrient, Growth, Fruit Quality, and Yield of Carica papaya L. cv. Sekaki. Agronomy, 2020, 10, 1320.	3.0	5
29	Effects of Amending Phosphatic Fertilizers with Clinoptilolite Zeolite on Phosphorus Availability and Its Fractionation in an Acid Soil. Applied Sciences (Switzerland), 2020, 10, 3162.	2.5	7
30	Soil Nitrogen Fractions, Nitrogen Use Efficiency and Yield of Zea mays L. Grown on a Tropical Acid Soil Treated with Composts and Clinoptilolite Zeolite. Applied Sciences (Switzerland), 2020, 10, 4139.	2.5	10
31	Adsorption and Desorption of Nitrogen, Phosphorus, Potassium, and Soil Buffering Capacity Following Application of Chicken Litter Biochar to an Acid Soil. Applied Sciences (Switzerland), 2020, 10, 295.	2.5	31
32	Potential of Using Ginger Essential Oils-Based Nanotechnology to Control Tropical Plant Diseases. Plant Pathology Journal, 2020, 36, 515-535.	1.7	16
33	Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea) Tj ETQq1 1 C).784314 r 0.6	gBT/Overloci
34	Soil pH Buffering Capacity and Nitrogen Availability Following Compost Application in a Tropical Acid Soil. Compost Science and Utilization, 2018, 26, 1-15.	1.2	30
35	Effects of clinoptilolite zeolite on phosphorus dynamics and yield of Zea Mays L. cultivated on an acid soil. PLoS ONE, 2018, 13, e0204401.	2.5	28
36	Amending Chemical Fertilizers with Rice Straw Compost and Clinoptilolite Zeolite and Their Effects on Nitrogen Use Efficiency and Fresh Cob Yield of Zea mays L Communications in Soil Science and Plant Analysis, 2018, 49, 1795-1813.	1.4	2

Osumanu Ahmed

#	Article	IF	CITATIONS
37	Short Term Enhancement of Nutrients Availability in <i>Zea mays</i> L. Cultivation on an Acid Soil Using Compost and Clinoptilolite Zeolite. Compost Science and Utilization, 2017, 25, 22-35.	1.2	12
38	Association of Copper and Zinc Levels in Oil Palm (<i>Elaeis guineensis</i>) to the Spatial Distribution of <i>Ganoderma</i> Species inÂthe Plantations on Peat. Journal of Phytopathology, 2017, 165, 276-282.	1.0	9
39	Enhancing nitrogen availability from urea using clinoptilolite zeolite. Geoderma, 2017, 306, 152-159.	5.1	41
40	Minimizing Ammonia Volatilization from Urea in Waterlogged Condition Using Chicken Litter Biochar. Communications in Soil Science and Plant Analysis, 2017, 48, 2083-2092.	1.4	4
41	Reducing Soil Phosphorus Fixation to Improve Yield of Maize on a Tropical Acid Soil Using Compost and Biochar Derived from Agro-Industrial Wastes. Compost Science and Utilization, 2017, 25, 82-94.	1.2	12
42	Methane Emission from Pineapple Cultivation on a Tropical Peatland at Saratok, Malaysia. Sustainable Agriculture Research, 2017, 6, 64.	0.3	1
43	Nitrous Oxide Emission of a Tropical Peat Soil Grown with Pineapple at Saratok, Malaysia. Sustainable Agriculture Research, 2017, 6, 75.	0.3	2
44	IMPROVING PHOSPHORUS AVAILABILITY, NUTRIENT UPTAKE AND DRY MATTER PRODUCTION OF <i>ZEA MAYS</i> L. ON A TROPICAL ACID SOIL USING POULTRY MANURE BIOCHAR AND PINEAPPLE LEAVES COMPOST. Experimental Agriculture, 2016, 52, 447-465.	0.9	28
45	Minimizing ammonia volatilization from urea, improving lowland rice (cv. MR219) seed germination, plant growth variables, nutrient uptake, and nutrient recovery using clinoptilolite zeolite. Archives of Agronomy and Soil Science, 2016, 62, 708-724.	2.6	24
46	Improving Ammonium and Nitrate Release from Urea Using Clinoptilolite Zeolite and Compost Produced from Agricultural Wastes. Scientific World Journal, The, 2015, 2015, 1-12.	2.1	38
47	Improving Lowland Rice (O. sativaL. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances. Scientific World Journal, The, 2015, 2015, 1-14.	2.1	6
48	Compost maturity and nitrogen availability by co-composting of paddy husk and chicken manure amended with clinoptilolite zeolite. Waste Management and Research, 2015, 33, 322-331.	3.9	38
49	Litterfall production in a tropical mangrove of Sarawak, Malaysia. Zoology and Ecology, 2015, 25, 157-165.	0.2	31
50	Status of some fishery resources in a tropical mangrove estuary of Sarawak, Malaysia. Marine Biology Research, 2015, 11, 834-846.	0.7	28
51	Improving Phosphorus Availability in an Acid Soil Using Organic Amendments Produced from Agroindustrial Wastes. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	78
52	Co-composting of pineapple leaves and chicken manure slurry. International Journal of Recycling of Organic Waste in Agriculture, 2013, 2, 1.	2.0	23
53	Compost and Crude Humic Substances Produced from Selected Wastes and Their Effects on <i>Zea mays</i> L. Nutrient Uptake and Growth. Scientific World Journal, The, 2013, 2013, 1-15.	2.1	22
54	Accumulation of Soil Carbon and Phosphorus Contents of a Rehabilitated Forest. Scientific World Journal, The, 2010, 10, 1988-1995.	2.1	4

#	Article	IF	CITATIONS
55	Ammonia volatilization and ammonium accumulation from urea mixed with zeolite and triple superphosphate. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2008, 58, 182-186.	0.6	30