David Bolzonella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3947234/publications.pdf

Version: 2024-02-01

36271 45285 9,208 165 51 90 citations h-index g-index papers 166 166 166 7390 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrated selection of PHA-storing biomass and nitrogen removal via nitrite from sludge reject water: a mathematical model. Environmental Technology (United Kingdom), 2024, 45, 73-86.	1.2	O
2	Upscaled and validated technologies for the production of bio-based materials from wastewater., 2022, , 197-222.		O
3	Anaerobic fermentation technologies for the production of chemical building blocks and bio-based products from wastewater., 2022,, 159-195.		O
4	Single Cell Proteins production from food processing effluents and digestate. Chemosphere, 2022, 296, 134076.	4.2	26
5	Combined sewer overflows: A critical review on best practice and innovative solutions to mitigate impacts on environment and human health. Critical Reviews in Environmental Science and Technology, 2021, 51, 1585-1618.	6.6	62
6	A microalgalâ€based preparation with synergistic cellulolytic and detoxifying action towards chemicalâ€treated lignocellulose. Plant Biotechnology Journal, 2021, 19, 124-137.	4.1	10
7	Microplastics in real wastewater treatment schemes: Comparative assessment and relevant inhibition effects on anaerobic processes. Chemosphere, 2021, 262, 128415.	4.2	69
8	A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions. Renewable and Sustainable Energy Reviews, 2021, 137, 110441.	8.2	13
9	Catchment-wide validated assessment of combined sewer overflows (CSOs) in a mediterranean coastal area and possible disinfection methods to mitigate microbial contamination. Environmental Research, 2021, 196, 110367.	3.7	10
10	Non-conventional yeasts for food and additives production in a circular economy perspective. FEMS Yeast Research, 2021, 21, .	1.1	12
11	Single-phase anaerobic digestion of the organic fraction of municipal solid waste without dilution: Reactor stability and process performance of small, decentralised plants. Waste Management, 2021, 125, 103-111.	3.7	6
12	Can bioplastics be treated in conventional anaerobic digesters for food waste treatment?. Environmental Technology and Innovation, 2021, 22, 101393.	3.0	56
13	Valorisation of Agricultural Digestate for the Ammonium Sulfate Recovery and Soil Improvers Production. Waste and Biomass Valorization, 2021, 12, 6903-6916.	1.8	5
14	Effects of the Sludge Retention Time and Carbon Source on Polyhydroxyalkanoate-Storing Biomass Selection under Aerobic-Feast and Anoxic-Famine Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 9455-9464.	3.2	14
15	Targeted Bio-Based Volatile Fatty Acid Production from Waste Streams through Anaerobic Fermentation: Link between Process Parameters and Operating Scale. ACS Sustainable Chemistry and Engineering, 2021, 9, 9970-9987.	3.2	15
16	Validating Circular Performance Indicators: The Interface between Circular Economy and Stakeholders. Water (Switzerland), 2021, 13, 2198.	1.2	11
17	Optimization of short chain volatile fatty acids production from household food waste for biorefinery applications. Environmental Technology and Innovation, 2021, 23, 101562.	3.0	30
18	Influence of different household Food Wastes Fractions on Volatile Fatty Acids production by anaerobic fermentation. Bioresource Technology, 2021, 335, 125289.	4.8	40

#	Article	IF	Citations
19	Volatile Fatty Acid Recovery from Anaerobic Fermentate: Focusing on Adsorption and Desorption Performances. Industrial & Desorption Chemistry Research, 2021, 60, 13701-13709.	1.8	19
20	Enhancing volatile fatty acids (VFA) production from food waste in a two-phases pilot-scale anaerobic digestion process. Journal of Environmental Chemical Engineering, 2021, 9, 106062.	3.3	50
21	Monitoring of cyanobacterial blooms and assessing polymer-enhanced microfiltration and ultrafiltration for microcystin removal in an Italian drinking water treatment plant. Environmental Pollution, 2021, 286, 117535.	3.7	18
22	Brine treatment technologies towards minimum/zero liquid discharge and resource recovery: State of the art and techno-economic assessment. Journal of Environmental Management, 2021, 300, 113681.	3.8	44
23	Biodiesel, biogas and fermentable sugars production from Spent coffee Grounds: A cascade biorefinery approach. Bioresource Technology, 2021, 342, 125952.	4.8	32
24	Water-Energy-Food-Climate Nexus in an Integrated Peri-Urban Wastewater Treatment and Reuse System: From Theory to Practice. Sustainability, 2021, 13, 10952.	1.6	12
25	Polyhydroxyalkanoated-Rich Microbial Cells from Bio-Based Volatile Fatty Acids as Potential Ingredient for Aquaculture Feed. Energies, 2021, 14, 38.	1.6	7
26	Validation of an evidence-based methodology to support regional carbon footprint assessment and decarbonisation of wastewater treatment service in Italy. Water Research, 2021, 207, 117831.	5.3	18
27	Producing Biohythane from Urban Organic Wastes. Waste and Biomass Valorization, 2020, 11, 2367-2374.	1.8	14
28	Food wastes and sewage sludge as feedstock for an urban biorefinery producing biofuels and addedâ€value bioproducts. Journal of Chemical Technology and Biotechnology, 2020, 95, 328-338.	1.6	71
29	Validated innovative approaches for energy-efficient resource recovery and re-use from municipal wastewater: From anaerobic treatment systems to a biorefinery concept. Critical Reviews in Environmental Science and Technology, 2020, 50, 869-902.	6.6	32
30	An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Water Research, 2020, 170 , 115371 .	5.3	112
31	Anaerobic Co-Digestion Effluent as Substrate for Chlorella vulgaris and Scenedesmus obliquus Cultivation. Energies, 2020, 13, 4880.	1.6	3
32	Biological thermophilic post hydrolysis of digestate enhances the biogas production in the anaerobic digestion of agro-waste. Renewable and Sustainable Energy Reviews, 2020, 134, 110174.	8.2	19
33	Pilot-scale multi-purposes approach for volatile fatty acid production, hydrogen and methane from an automatic controlled anaerobic process. Journal of Cleaner Production, 2020, 277, 124297.	4.6	27
34	The cascade biorefinery approach for the valorization of the spent coffee grounds. Renewable Energy, 2020, 157, 1203-1211.	4.3	31
35	Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. Bioresource Technology, 2020, 314, 123729.	4.8	35
36	Sieving of municipal wastewater and recovery of bio-based volatile fatty acids at pilot scale. Water Research, 2020, 174, 115633.	5.3	54

#	Article	IF	Citations
37	Long-term validation of polyhydroxyalkanoates production potential from the sidestream of municipal wastewater treatment plant at pilot scale. Chemical Engineering Journal, 2020, 390, 124627.	6.6	55
38	Resource recovery from water: From concept to standard practice. Water Research, 2020, 178, 115856.	5. 3	8
39	Soft Sensor Application in Identification of the Activated Sludge Bulking Considering the Technological and Economical Aspects of Smart Systems Functioning. Sensors, 2020, 20, 1941.	2.1	19
40	A Multiproduct Biorefinery Approach for the Production of Hydrogen, Methane and Volatile Fatty Acids from Agricultural Waste. Waste and Biomass Valorization, 2020, 11, 5239-5246.	1.8	26
41	Decentralized Community Composting: Past, Present and Future Aspects of Italy. Sustainability, 2020, 12, 3319.	1.6	50
42	Valorization of Residual Orange Peels: Limonene Recovery, Volatile Fatty Acids, and Biogas Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 6834-6843.	3.2	39
43	Energy and Nutrients' Recovery in Anaerobic Digestion of Agricultural Biomass: An Italian Perspective for Future Applications. Energies, 2019, 12, 3287.	1.6	32
44	Pilot scale cellulose recovery from sewage sludge and reuse in building and construction material. Waste Management, 2019, 100, 208-218.	3.7	45
45	Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas. Renewable and Sustainable Energy Reviews, 2019, 112, 1-10.	8.2	78
46	Pilot-Scale Polyhydroxyalkanoate Production from Combined Treatment of Organic Fraction of Municipal Solid Waste and Sewage Sludge. Industrial & Engineering Chemistry Research, 2019, 58, 12149-12158.	1.8	100
47	Organic wastes as alternative sources of phosphorus for plant nutrition in a calcareous soil. Waste Management, 2019, 93, 34-46.	3.7	23
48	Effects of Enzymes Addition on Biogas Production From Anaerobic Digestion of Agricultural Biomasses. Waste and Biomass Valorization, 2019, 10, 3711-3722.	1.8	19
49	Optimization of urban waste fermentation for volatile fatty acids production. Waste Management, 2019, 92, 21-29.	3.7	71
50	Winery wastewater treatment: a critical overview of advanced biological processes. Critical Reviews in Biotechnology, 2019, 39, 489-507.	5.1	54
51	Exploitation of Solar Energy for Ammonium Sulfate Recovery from Anaerobic Digestate of Different Origin. Waste and Biomass Valorization, 2019, 10, 3701-3709.	1.8	10
52	Novel routes for urban bio-waste management: A combined acidic fermentation and anaerobic digestion process for platform chemicals and biogas production. Journal of Cleaner Production, 2019, 220, 368-375.	4.6	48
53	Recent developments in biohythane production from household food wastes: A review. Bioresource Technology, 2018, 257, 311-319.	4.8	122
54	Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. Water Research, 2018, 136, 112-119.	5. 3	68

#	Article	IF	Citations
55	Environmental and sustainability evaluation of livestock waste management practices in Cyprus. Science of the Total Environment, 2018, 634, 127-140.	3.9	21
56	Enhanced retention of deammonification microorganisms for the treatment of psycrophilic anaerobic digestate. Chemical Engineering Journal, 2018, 344, 633-639.	6.6	8
57	Evaluation of the energy and greenhouse gases impacts of grass harvested on riverbanks for feeding anaerobic digestion plants. Journal of Cleaner Production, 2018, 172, 4099-4109.	4.6	32
58	Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Journal of Cleaner Production, 2018, 171, 1376-1385.	4.6	92
59	Nutrients recovery from anaerobic digestate of agro-waste: Techno-economic assessment of full scale applications. Journal of Environmental Management, 2018, 216, 111-119.	3.8	121
60	Monitoring and Control Improvement of Single and Two Stage Thermophilic Sludge Digestion Through Multivariate Analysis. Waste and Biomass Valorization, 2018, 9, 985-994.	1.8	4
61	Organic Fraction of Municipal Solid Waste Recovery by Conversion into Added-Value Polyhydroxyalkanoates and Biogas. ACS Sustainable Chemistry and Engineering, 2018, 6, 16375-16385.	3.2	73
62	Some critical aspects of the enzymatic hydrolysis at high dryâ€matter content: a review. Biofuels, Bioproducts and Biorefining, 2018, 12, 711-723.	1.9	35
63	Volatile fatty acids production from food wastes for biorefinery platforms: A review. Journal of Environmental Management, 2018, 226, 278-288.	3.8	264
64	A research challenge vision regarding management of agricultural waste in a circular bio-based economy. Critical Reviews in Environmental Science and Technology, 2018, 48, 614-654.	6.6	189
65	Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production. Journal of Environmental Management, 2017, 203, 745-752.	3.8	45
66	Full scale co-digestion of wastewater sludge and food waste: Bottlenecks and possibilities. Renewable and Sustainable Energy Reviews, 2017, 72, 354-362.	8.2	239
67	Development and application of an automatic feeding control to manage anaerobic co-digestion of winery wastes. Journal of Cleaner Production, 2017, 161, 75-83.	4.6	3
68	Co-digestion of the organic fraction of municipal solid waste and sludge improves the energy balance of wastewater treatment plants: Rovereto case study. Renewable Energy, 2017, 113, 980-988.	4.3	65
69	Decentralised schemes for integrated management of wastewater and domestic organic waste: the case of a small community. Journal of Environmental Management, 2017, 203, 732-740.	3.8	17
70	Editorial - Waste management. Journal of Environmental Management, 2017, 203, 619-620.	3.8	2
71	Is SCENA a good approach for side-stream integrated treatment from an environmental and economic point of view?. Water Research, 2017, 125, 478-489.	5.3	33
72	Biogas from Residual Grass: A Territorial Approach for Sustainable Bioenergy Production. Waste and Biomass Valorization, 2017, 8, 2747-2756.	1.8	21

#	Article	IF	Citations
73	Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation. Renewable Energy, 2017, 114, 455-463.	4.3	61
74	Technical and environmental evaluation of an integrated scheme for the co-treatment of wastewater and domestic organic waste in small communities. Water Research, 2017, 109, 173-185.	5.3	20
75	Influence of temperature and hydraulic retention on the production of volatile fatty acids during anaerobic fermentation of cow manure and maize silage. Bioresource Technology, 2017, 223, 59-64.	4.8	88
76	Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste. International Journal of Molecular Sciences, 2016, 17, 1692.	1.8	74
77	A novel scheme for denitrifying biological phosphorus removal via nitrite from nutrientâ€rich anaerobic effluents in a shortâ€cut sequencing batch reactor. Journal of Chemical Technology and Biotechnology, 2016, 91, 190-197.	1.6	7
78	Renewable energy from thermophilic anaerobic digestion of winery residue: Preliminary evidence from batch and continuous lab-scale trials. Biomass and Bioenergy, 2016, 91, 150-159.	2.9	54
79	Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste. Waste Management, 2016, 49, 40-46.	3.7	98
80	Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge. Renewable Energy, 2016, 86, 1324-1331.	4.3	79
81	Mesophilic and thermophilic anaerobic digestion of the liquid fraction of pressed biowaste for high energy yields recovery. Waste Management, 2016, 48, 227-235.	3.7	65
82	Two-Phase Anaerobic Digestion of Food Wastes for Hydrogen and Methane Production. Green Energy and Technology, 2016, , 75-90.	0.4	6
83	Mitigating off-gas emissions in the biological nitrogen removal via nitrite process treating anaerobic effluents. Journal of Cleaner Production, 2015, 93, 126-133.	4.6	32
84	Nutrient removal via nitrite from reject water and polyhydroxyalkanoate (<scp>PHA</scp>) storage during nitrifying conditions. Journal of Chemical Technology and Biotechnology, 2015, 90, 1802-1810.	1.6	17
85	Nano-occurrence and removal of PCBs within the Europe's largest petrochemical MBR system. Water Research, 2015, 83, 329-336.	5.3	14
86	Harmonization of the quantitative determination of volatile fatty acids profile in aqueous matrix samples by direct injection using gas chromatography and high-performance liquid chromatography techniques: Multi-laboratory validation study. Journal of Chromatography A, 2015, 1413, 94-106.	1.8	25
87	Development of a Novel Process Integrating the Treatment of Sludge Reject Water and the Production of Polyhydroxyalkanoates (PHAs). Environmental Science & Eamp; Technology, 2015, 49, 10877-10885.	4.6	66
88	Analysis of Meso/Thermo AD Process Applied to Pressed Biowaste. Waste and Biomass Valorization, 2015, 6, 723-731.	1.8	6
89	Current status in wastewater treatment, reuse and research in some mediterranean countries. Desalination and Water Treatment, 2015, 53, 2015-2030.	1.0	60
90	Treatment of waste activated sludge together with agro-waste by anaerobic digestion: focus on effluent quality. Water Science and Technology, 2014, 69, 525-531.	1.2	15

#	Article	IF	Citations
91	Anaerobic co-digestion of winery waste and waste activated sludge: assessment of process feasibility. Water Science and Technology, 2014, 69, 269-277.	1.2	22
92	Method for technical, economic and environmental assessment of advanced sludge processing routes. Water Science and Technology, 2014, 69, 2407-2416.	1.2	14
93	Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste. Critical Reviews in Biotechnology, 2014, 34, 244-257.	5.1	41
94	Use of external carbon sources derived from biowaste for short-cut nutrient removal from anaerobic effluents. Water Science and Technology, 2014, 69, 1853-1858.	1.2	4
95	Winery waste recycling through anaerobic co-digestion with waste activated sludge. Waste Management, 2014, 34, 2028-2035.	3.7	48
96	Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. International Journal of Hydrogen Energy, 2014, 39, 17563-17572.	3.8	90
97	Inhibition of biomass activity in the via nitrite nitrogen removal processes by veterinary pharmaceuticals. Bioresource Technology, 2014, 152, 477-483.	4.8	30
98	Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant. Science of the Total Environment, 2014, 490, 871-879.	3.9	78
99	Are centralized MBRs coping with the current transition of large petrochemical areas? A pilot study in Porto-Marghera (Venice). Chemical Engineering Journal, 2013, 214, 68-77.	6.6	17
100	Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors. Renewable Energy, 2013, 55, 260-265.	4.3	172
101	Biohydrogen production from food waste in batch and semi-continuous conditions: Evaluation of a two-phase approach with digestate recirculation for pH control. International Journal of Hydrogen Energy, 2013, 38, 4351-4360.	3.8	57
102	Role and characteristics of problematic biofilms within the removal and mobility of trace metals in a pilot-scale membrane bioreactor. Process Biochemistry, 2013, 48, 1757-1766.	1.8	17
103	Biological nutrients removal via nitrite from the supernatant of anaerobic co-digestion using a pilot-scale sequencing batch reactor operating under transient conditions. Chemical Engineering Journal, 2013, 230, 595-604.	6.6	33
104	Co-digestion of livestock effluents, energy crops and agro-waste: Feeding and process optimization in mesophilic and thermophilic conditions. Bioresource Technology, 2013, 128, 612-618.	4.8	109
105	Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 2013, 70, 71-77.	1.8	158
106	Processes comparison for nickel and chrome removal from urban landfill leachate. Desalination and Water Treatment, 2012, 50, 132-139.	1.0	4
107	Two-Stage Start-Up to Achieve the Stable via-Nitrite Pathway in a Demonstration SBR for Anaerobic Codigestate Treatment. Industrial & Engineering Chemistry Research, 2012, 51, 15423-15430.	1.8	11
108	Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment. Science of the Total Environment, 2012, 433, 352-361.	3.9	84

7

#	Article	IF	Citations
109	High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study. Waste Management, 2012, 32, 1196-1201.	3.7	108
110	Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. International Journal of Hydrogen Energy, 2012, 37, 11549-11555.	3.8	175
111	Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review. Desalination, 2012, 286, 1-7.	4.0	80
112	Cycling batch vs continuous enrichment of endogenous nitrifiers in membrane bioreactors treating petrochemical wastewater. Desalination and Water Treatment, 2011, 35, 131-137.	1.0	3
113	Fate of aromatic hydrocarbons in Italian municipal wastewater systems: An overview of wastewater treatment using conventional activated-sludge processes (CASP) and membrane bioreactors (MBRs). Water Research, 2011, 45, 93-104.	5.3	126
114	Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste for Methane Production. , 2011, , 463-472.		7
115	Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresource Technology, 2011, 102, 8605-8611.	4.8	166
116	Two-phase thermophilic anaerobic digestion process for biohythane production treating biowaste: preliminary results. Water Science and Technology, 2011, 64, 715-721.	1.2	23
117	Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste for Methane Production: Research and Industrial Application., 2011,, 411-420.		1
118	Two-phase thermophilic anaerobic digestion of biowaste for bio-hythane production: Yields and feasibility of the process. Journal of Biotechnology, 2010, 150, 162-162.	1.9	1
119	Application of membrane bioreactor technology for wastewater treatment and reuse in the Mediterranean region: Focusing on removal efficiency of non-conventional pollutants. Journal of Environmental Management, 2010, 91, 2424-2431.	3.8	50
120	Thermophilic anaerobic co-digestion of cattle manure with agro-wastes and energy crops: Comparison of pilot and full scale experiences. Bioresource Technology, 2010, 101, 545-550.	4.8	172
121	Poly-chlorinated dibenzo-p-dioxins, dibenzo-furans and dioxin-like poly-chlorinated biphenyls occurrence and removal in conventional and membrane activated sludge processes. Bioresource Technology, 2010, 101, 9445-9454.	4.8	18
122	High-rate anaerobic treatment of Fischer–Tropsch wastewater in a packed-bed biofilm reactor. Water Research, 2010, 44, 2745-2752.	5.3	53
123	Application of a membrane bioreactor for winery wastewater treatment. Water Science and Technology, 2010, 62, 2754-2759.	1.2	33
124	Membrane BioReactors: A Cost-Effective Solution to Enhance the Removal of Xenobiotics from Urban Wastewaters?. Environmental Pollution, 2010, , 339-354.	0.4	1
125	Carbon footprint of aerobic biological treatment of winery wastewater. Water Science and Technology, 2009, 60, 1185-1189.	1.2	14
126	Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 2009, 59, 927-934.	1.2	1,417

#	Article	IF	Citations
127	Long-term experience with an automatic process control for nitrogen removal in membrane bioreactors. Desalination, 2008, 227, 72-84.	4.0	17
128	Occurrence and fate of heavy metals in large wastewater treatment plants treating municipal and industrial wastewaters. Water Science and Technology, 2008, 57, 1329-1336.	1.2	39
129	Alternate Cycles Process for Municipal WWTPs Upgrading: Ready for Widespread Application?. Industrial & Description of the Company of the Market Research, 2008, 47, 4387-4393.	1.8	15
130	Switching small WWTPs from extended to intermittent aeration: process behaviour and performances. Water Science and Technology, 2008, 58, 865-872.	1.2	13
131	Treatment of food processing wastewater. , 2007, , 573-596.		4
132	Anaerobic co-digestion of sludge with other organic wastes in small wastewater treatment plants: an economic considerations evaluation. Water Science and Technology, 2007, 56, 45-53.	1.2	100
133	Application of food waste disposers and alternate cycles process in small-decentralized towns: A case study. Water Research, 2007, 41, 893-903.	5.3	58
134	Two-Phase Anaerobic Digestion of Waste Activated Sludge:Â Effect of an Extreme Thermophilic Prefermentation. Industrial & Engineering Chemistry Research, 2007, 46, 6650-6655.	1.8	75
135	Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience. Water Science and Technology, 2007, 56, 79-87.	1.2	15
136	Operation and Maintenance of Full-Scale Municipal Membrane Biological Reactors:  A Detailed Overview on a Case Study. Industrial & Engineering Chemistry Research, 2007, 46, 6688-6695.	1.8	23
137	Micropollutants Removal and Operating Strategies in Ultrafiltration Membrane Systems for Municipal Wastewater Treatment:  Preliminary Results. Industrial & Digineering Chemistry Research, 2007, 46, 6716-6723.	1.8	22
138	Phosphorus Removal from Anaerobic Supernatants:Â Start-Up and Steady-State Conditions of a Fluidized Bed Reactor Full-Scale Plant. Industrial & Engineering Chemistry Research, 2006, 45, 663-669.	1.8	30
139	Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Science and Technology, 2006, 53, 23-32.	1.2	158
140	Phosphogypsum Leachate:  Treatment Feasibility in a Membrane Plant. Industrial & Description (Chemistry Research, 2006, 45, 6504-6511.	1.8	14
141	Anaerobic codigestion of waste activated sludge and OFMSW: the experiences of Viareggio and Treviso plants (Italy). Water Science and Technology, 2006, 53, 203-211.	1.2	192
142	Anaerobic co-digestion of sludge with other organic wastes and phosphorus reclamation in wastewater treatment plants for biological nutrients removal. Water Science and Technology, 2006, 53, 177-186.	1.2	32
143	Mesophilic anaerobic digestion of waste activated sludge: influence of the solid retention time in the wastewater treatment process. Process Biochemistry, 2005, 40, 1453-1460.	1.8	271
144	Removal of nutrients and micropollutants treating low loaded wastewaters in a membrane bioreactor operating the automatic alternate-cycles process. Desalination, 2005, 183, 395-405.	4.0	51

#	Article	IF	Citations
145	Treatment of mixed municipal and winery wastewaters in a conventional activated sludge process: a case study. Water Science and Technology, 2005, 51, 89-98.	1.2	30
146	Phosphorus Removal from Supernatants at Low Concentration Using Packed and Fluidized-Bed Reactors. Industrial & Engineering Chemistry Research, 2005, 44, 6701-6707.	1.8	34
147	Anaerobic Fermentation of Organic Municipal Solid Wastes for the Production of Soluble Organic Compounds. Industrial & Engineering Chemistry Research, 2005, 44, 3412-3418.	1.8	86
148	An alternate oxic-anoxic process automatically controlled. Theory and practice in a real treatment plant network. Water Science and Technology, 2004, 48, 337-344.	1.2	16
149	Semi-dry thermophilic anaerobic digestion of the organic fraction of municipal solid waste: focusing on the start-up phase. Bioresource Technology, 2003, 86, 123-129.	4.8	132
150	The under sink garbage grinder: A friendly technology for the environment. Environmental Technology (United Kingdom), 2003, 24, 349-359.	1.2	46
151	An Automatically Controlled Alternate Oxicâ [^] Anoxic Process for Small Municipal Wastewater Treatment Plants. Industrial & Dystrial & Dystria & Dy	1.8	42
152	Anaerobic digestion of organic solid wastes: process behaviour in transient conditions. Water Science and Technology, 2003, 48, 1-8.	1.2	42
153	Comparison of the biodegradability of the grey fraction of municipal solid waste of Barcelona in mesophilic and thermophilic conditions. Water Science and Technology, 2003, 48, 21-28.	1.2	16
154	Membrane bioreactor processes: a must for the wastewater treatment plants of the Lagoon of Venice. Annali Di Chimica, 2003, 93, 381-8.	0.6	7
155	An alternate oxic-anoxic process automatically controlled. Theory and practice in a real treatment plant network. Water Science and Technology, 2003, 48, 337-44.	1.2	4
156	The Monitoring of a Two Step Aerobic-Anoxic Process with Separate Biomass to Enhance Performance in the Treatment of Liquid Industrial Wastes. Environmental Technology (United Kingdom), 2002, 23, 73-84.	1.2	1
157	Addition of an External Carbon Source To Enhance Nitrogen Biological Removal in the Treatment of Liquid Industrial Wastes. Industrial & Engineering Chemistry Research, 2002, 41, 2805-2811.	1.8	7
158	P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling. Water Research, 2002, 36, 1927-1938.	5.3	90
159	Biological nutrient removal wastewater treatments and sewage sludge anaerobic mesophilic digestion performances. Water Science and Technology, 2002, 46, 199-208.	1.2	28
160	The AF-BNR-SCP process as a way to reduce global sludge production: comparison with classical approaches on a full scale basis. Water Science and Technology, 2002, 46, 89-96.	1.2	15
161	Effect of sludge age on the performance of a membrane bioreactor: influence on nutrient and metals removal. Desalination, 2002, 146, 467-474.	4.0	54
162	Optimization of Chemical and Physical Pretreatments in a Platform for the Treatment of Liquid Industrial Wastes. Industrial & Engineering Chemistry Research, 2001, 40, 4506-4512.	1.8	4

#	Article	IF	CITATIONS
163	Denitrification potential enhancement by addition of anaerobic fermentation products from the organic fraction of municipal solid waste. Water Science and Technology, 2001, 44, 187-194.	1.2	48
164	Acidogenic fermentation of source separated mixtures of vegetables and fruits wasted from supermarkets. Biodegradation, 2000, 11, 407-414.	1.5	32
165	Integration of wastewater and OFMSW treatment cycles: from the pilot scale experiment to the industrial realisation – the new full scale plant of Treviso (Italy). Water Science and Technology, 2000, 41, 165-173.	1.2	13