
Meg A Krawchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3947026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fire in the Earth System. Science, 2009, 324, 481-484.	12.6	2,330
2	Global Pyrogeography: the Current and Future Distribution of Wildfire. PLoS ONE, 2009, 4, e5102.	2.5	710
3	Climate change and disruptions to global fire activity. Ecosphere, 2012, 3, 1-22.	2.2	650
4	Adapt to more wildfire in western North American forests as climate changes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4582-4590.	7.1	536
5	Constraints on global fire activity vary across a resource gradient. Ecology, 2011, 92, 121-132.	3.2	348
6	Why have global shark and ray landings declined: improved management or overfishing?. Fish and Fisheries, 2016, 17, 438-458.	5.3	228
7	Rethinking resilience to wildfire. Nature Sustainability, 2019, 2, 797-804.	23.7	174
8	Evidence for widespread changes in the structure, composition, and fire regimes of western North American forests. Ecological Applications, 2021, 31, e02431.	3.8	153
9	Climate changeâ€induced shifts in fire for <scp>M</scp> editerranean ecosystems. Global Ecology and Biogeography, 2013, 22, 1118-1129.	5.8	130
10	Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophysical Research Letters, 2010, 37, .	4.0	120
11	Forest fire management, climate change, and the risk of catastrophic carbon losses. Frontiers in Ecology and the Environment, 2013, 11, 66-67.	4.0	104
12	Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere, 2016, 7, e01632.	2.2	103
13	Disturbance refugia within mosaics of forest fire, drought, and insect outbreaks. Frontiers in Ecology and the Environment, 2020, 18, 235-244.	4.0	91
14	Contributions of Ignitions, Fuels, and Weather to the Spatial Patterns of Burn Probability of a Boreal Landscape. Ecosystems, 2011, 14, 1141-1155.	3.4	72
15	Invasive grasses: A new perfect storm for forested ecosystems?. Forest Ecology and Management, 2020, 463, 117985.	3.2	64
16	The climate space of fire regimes in northâ€western North America. Journal of Biogeography, 2015, 42, 1736-1749.	3.0	59
17	Fire Refugia: What Are They, and Why Do They Matter for Global Change?. BioScience, 0, , .	4.9	51
18	Wildfires managed for restoration enhance ecological resilience. Ecosphere, 2018, 9, e02161.	2.2	51

Meg A Krawchuk

#	Article	IF	CITATIONS
19	Burning issues: statistical analyses of global fire data to inform assessments of environmental change. Environmetrics, 2014, 25, 472-481.	1.4	50
20	Contributions of fire refugia to resilient ponderosa pine and dry mixed onifer forest landscapes. Ecosphere, 2019, 10, e02809.	2.2	49
21	Pyrogeography, historical ecology, and the human dimensions of fire regimes. Journal of Biogeography, 2014, 41, 833-836.	3.0	47
22	Effects of biotic feedback and harvest management on boreal forest fire activity under climate change. , 2011, 21, 122-136.		44
23	Integrating Subjective and Objective Dimensions of Resilience in Fire-Prone Landscapes. BioScience, 2019, 69, 379-388.	4.9	40
24	Influence of fire refugia spatial pattern on post-fire forest recovery in Oregon's Blue Mountains. Landscape Ecology, 2019, 34, 771-792.	4.2	37
25	Wildfire, Smoke Exposure, Human Health, and Environmental Justice Need to be Integrated into Forest Restoration and Management. Current Environmental Health Reports, 2022, 9, 366-385.	6.7	31
26	Influence of topography and fuels on fire refugia probability under varying fire weather conditions in forests of the Pacific Northwest, USA. Canadian Journal of Forest Research, 2020, 50, 636-647.	1.7	29
27	Composition and Structure of Forest Fire Refugia: What Are the Ecosystem Legacies across Burned Landscapes?. Forests, 2018, 9, 243.	2.1	28
28	Dead forests burning: the influence of beetle outbreaks on fire severity and legacy structure in subâ€boreal forests. Ecosphere, 2019, 10, e02744.	2.2	23
29	How Much Forest Persists Through Fire? High-Resolution Mapping of Tree Cover to Characterize the Abundance and Spatial Pattern of Fire Refugia Across Mosaics of Burn Severity. Forests, 2019, 10, 782.	2.1	21
30	How do plant communities differ between fire refugia and fireâ€generated earlyâ€seral vegetation?. Journal of Vegetation Science, 2020, 31, 26-39.	2.2	21
31	Drivers of lodgepole pine recruitment across a gradient of bark beetle outbreak and wildfire in British Columbia. Forest Ecology and Management, 2019, 451, 117500.	3.2	13
32	Where and why do conifer forests persist in refugia through multiple fire events?. Global Change Biology, 2021, 27, 3642-3656.	9.5	13
33	Contrasting the efficiency of landscape versus community protection fuel treatment strategies to reduce wildfire exposure and risk. Journal of Environmental Management, 2022, 309, 114650.	7.8	13
34	Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape. Environmental Research Letters, 2021, 16, 064081.	5.2	12
35	Expanding the invasion footprint: <i>Ventenata dubia</i> and relationships to wildfire, environment, and plant communities in the Blue Mountains of the Inland Northwest, USA. Applied Vegetation Science, 2020, 23, 562-574.	1.9	11
36	Community invasion resistance is influenced by interactions between plant traits and site productivity. Ecology, 2022, 103, e3697.	3.2	9

#	Article	IF	CITATIONS
37	An added boost in pyrogenic carbon when wildfire burns forest with high pre-fire mortality. Fire Ecology, 2020, 16, .	3.0	4
38	The invasive annual grass Ventenata dubia is insensitive to experimental removal of above-ground resident biomass across a productivity gradient. Biological Invasions, 0, , .	2.4	0