Jill A Rafael-Fortney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3946801/publications.pdf

Version: 2024-02-01

44 papers

1,896 citations

430874 18 h-index 302126 39 g-index

45 all docs

45 docs citations

45 times ranked

2651 citing authors

#	Article	IF	CITATIONS
1	Interplay of IKK/NF-κB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. Journal of Clinical Investigation, 2007, 117, 889-901.	8.2	382
2	Contemporary Cardiac Issues in Duchenne Muscular Dystrophy. Circulation, 2015, 131, 1590-1598.	1.6	240
3	Eplerenone for early cardiomyopathy in Duchenne muscular dystrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurology, The, 2015, 14, 153-161.	10.2	184
4	Cardiac Involvement in Patients With Muscular Dystrophies. Circulation: Cardiovascular Imaging, 2011, 4, 67-76.	2.6	167
5	Early Treatment With Lisinopril and Spironolactone Preserves Cardiac and Skeletal Muscle in Duchenne Muscular Dystrophy Mice. Circulation, 2011, 124, 582-588.	1.6	122
6	Utrophin deficiency worsens cardiac contractile dysfunction present in dystrophin-deficient mdx mice. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2373-H2378.	3.2	93
7	Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. Journal of the Neurological Sciences, 2008, 264, 106-111.	0.6	69
8	Metabolic Dysfunction and Altered Mitochondrial Dynamics in the Utrophin-Dystrophin Deficient Mouse Model of Duchenne Muscular Dystrophy. PLoS ONE, 2015, 10, e0123875.	2.5	53
9	Prednisolone Attenuates Improvement of Cardiac and Skeletal Contractile Function and Histopathology by Lisinopril and Spironolactone in the mdx Mouse Model of Duchenne Muscular Dystrophy. PLoS ONE, 2014, 9, e88360.	2.5	51
10	Mineralocorticoid receptors are present in skeletal muscle and represent a potential therapeutic target. FASEB Journal, 2015, 29, 4544-4554.	0.5	44
11	Glutamate receptors localize postsynaptically at neuromuscular junctions in mice. Muscle and Nerve, 2009, 39, 343-349.	2.2	41
12	Claudin-5 localizes to the lateral membranes of cardiomyocytes and is altered in utrophin/dystrophin-deficient cardiomyopathic mice. Journal of Molecular and Cellular Cardiology, 2005, 38, 323-332.	1.9	39
13	Claudin-5 levels are reduced in human end-stage cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2008, 45, 81-87.	1.9	28
14	Analysis of gene expression differences between utrophin/dystrophin-deficient vs mdx skeletal muscles reveals a specific upregulation of slow muscle genes in limb muscles. Neurogenetics, 2006, 7, 81-91.	1.4	27
15	Muscle damage, metabolism, and oxidative stress in <i>mdx</i> mice: Impact of aerobic running. Muscle and Nerve, 2016, 54, 110-117.	2.2	23
16	Is Upregulation of Sarcolipin Beneficial or Detrimental to Muscle Function?. Frontiers in Physiology, 2021, 12, 633058.	2.8	22
17	CASK and Dlg form a PDZ protein complex at the mammalian neuromuscular junction. Muscle and Nerve, 2004, 30, 164-171.	2.2	21
18	Cardiomyopathy in the dystrophin/utrophin-deficient mouse model of severe muscular dystrophy is characterized by dysregulation of matrix metalloproteinases. Neuromuscular Disorders, 2012, 22, 1006-1014.	0.6	21

#	Article	IF	CITATIONS
19	Sustaining Cardiac Claudin-5 Levels Prevents Functional Hallmarks of Cardiomyopathy in a Muscular Dystrophy Mouse Model. Molecular Therapy, 2012, 20, 1378-1383.	8.2	19
20	The Angiotensin Converting Enzyme Inhibitor Lisinopril Improves Muscle Histopathology but not Contractile Function in a Mouse Model of Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2015, 2, 257-268.	2.6	18
21	Similar Efficacy from Specific andÂNon-Specific Mineralocorticoid Receptor Antagonist Treatment of Muscular Dystrophy Mice. Journal of Neuromuscular Diseases, 2016, 3, 395-404.	2.6	18
22	Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1. Cardiovascular Pathology, 2015, 24, 160-167.	1.6	17
23	Gene expression effects of glucocorticoid and mineralocorticoid receptor agonists and antagonists on normal human skeletal muscle. Physiological Genomics, 2017, 49, 277-286.	2.3	17
24	Renin-angiotensin-aldosterone system inhibitors improve membrane stability and change gene-expression profiles in dystrophic skeletal muscles. American Journal of Physiology - Cell Physiology, 2017, 312, C155-C168.	4.6	17
25	Micro-dystrophin gene therapy prevents heart failure in an improved Duchenne muscular dystrophy cardiomyopathy mouse model. JCI Insight, 2021, 6, .	5.0	17
26	Myeloid cells are capable of synthesizing aldosterone to exacerbate damage in muscular dystrophy. Human Molecular Genetics, 2016, 25, ddw331.	2.9	15
27	Standard Operating Procedures (SOPs) for Evaluating the Heart in Preclinical Studies of Duchenne Muscular Dystrophy. Journal of Cardiovascular Translational Research, 2016, 9, 85-86.	2.4	15
28	Mineralocorticoid Receptor Antagonists in Muscular Dystrophy Mice During Aging and Exercise. Journal of Neuromuscular Diseases, 2018, 5, 295-306.	2.6	15
29	Mineralocorticoid receptor antagonism by finerenone is sufficient to improve function in preclinical muscular dystrophy. ESC Heart Failure, 2020, 7, 3983-3995.	3.1	13
30	Early Inflammation in Muscular Dystrophy Differs between Limb and Respiratory Muscles and Increases with Dystrophic Severity. American Journal of Pathology, 2021, 191, 730-747.	3.8	13
31	CASK localizes to nuclei in developing skeletal muscle and motor neuron culture models and is agrin-independent. Journal of Cellular Physiology, 2006, 206, 196-202.	4.1	12
32	Duchenne Muscular Dystrophy Mice and Men. Circulation Research, 2016, 118, 1059-1061.	4.5	12
33	Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Human Molecular Genetics, 2019, 28, 2030-2045.	2.9	12
34	The force-temperature relationship in healthy and dystrophic mouse diaphragm; implications for translational study design. Frontiers in Physiology, 2012, 3, 422.	2.8	11
35	Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Frontiers in Physiology, 2019, 10, 1324.	2.8	9
36	Muscle Twitch Kinetics Are Dependent on Muscle Group, Disease State, and Age in Duchenne Muscular Dystrophy Mouse Models. Frontiers in Physiology, 2020, 11, 568909.	2.8	6

#	Article	IF	CITATIONS
37	Myeloid mineralocorticoid receptors contribute to skeletal muscle repair in muscular dystrophy and acute muscle injury. American Journal of Physiology - Cell Physiology, 2022, 322, C354-C369.	4.6	6
38	Myocardial Contractile Dysfunction Is Present without Histopathology in a Mouse Model of Limb-Girdle Muscular Dystrophy-2F and Is Prevented after Claudin-5 Virotherapy. Frontiers in Physiology, 2016, 7, 539.	2.8	3
39	Mineralocorticoid Receptor Signaling in the Inflammatory Skeletal Muscle Microenvironments of Muscular Dystrophy and Acute Injury. Frontiers in Pharmacology, 0, 13 , .	3.5	3
40	Truncated CASK does not alter skeletal muscle or protein interactors. Muscle and Nerve, 2008, 38, 1116-1127.	2.2	1
41	The role of increased Sarcolipin expression in neonatal development and in muscle disease. FASEB Journal, 2013, 27, .	0.5	О
42	Abstract 17250: Serum vs. Imaging Biomarkers of Myocardial Injury in Duchenne Muscular Dystrophy: Findings from the E-SCAR DMD Trial. Circulation, 2014, 130, .	1.6	O
43	Elucidating the Role of Mineralocorticoid Receptors in Skeletal Muscle as a Potential Therapeutic Target for Duchenne Muscular Dystrophy. FASEB Journal, 2015, 29, 1038.2.	0.5	О
44	Submaximal Level Single Twitch Kinetics Dependent on Disease State in Duchenne Muscular Dystrophy Mouse Model. FASEB Journal, 2018, 32, 852.3.	0.5	0