Angel I Angelov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3946620/publications.pdf Version: 2024-02-01

ANCEL ANCELOV

#	Article	IF	CITATIONS
1	Development of a new oat-based probiotic drink. International Journal of Food Microbiology, 2006, 112, 75-80.	4.7	214
2	Production of Inorganic Nanoparticles by Microorganisms. Chemical Engineering and Technology, 2009, 32, 1026-1035.	1.5	112
3	Microflora identification of the Bulgarian cereal-based fermented beverage boza. Process Biochemistry, 2000, 36, 127-130.	3.7	106
4	ASSESSMENT OF POTENTIAL PROBIOTIC PROPERTIES OF LACTIC ACID BACTERIA AND YEAST STRAINS. Food Biotechnology, 2002, 16, 211-225.	1.5	97
5	Accumulation of CdS nanoparticles by yeasts in a fed-batch bioprocess. Journal of Biotechnology, 2007, 132, 481-486.	3.8	87
6	Monitoring the fermentation of the traditional Bulgarian Ã ⁻ ¿½beverage boza. International Journal of Food Science and Technology, 2001, 36, 129-134.	2.7	60
7	A Modified CTAB Method for DNA Extraction from Soybean and Meat Products. Biotechnology and Biotechnological Equipment, 2013, 27, 3803-3810.	1.3	59
8	Oats as a matrix of choice for developing fermented functional beverages. Journal of Food Science and Technology, 2018, 55, 2351-2360.	2.8	53
9	Process engineering for bioflavour production with metabolically active yeasts - a mini-review. Yeast, 2015, 32, 123-43.	1.7	49
10	Application of pure and mixed probiotic lactic acid bacteria and yeast cultures for oat fermentation. Journal of the Science of Food and Agriculture, 2005, 85, 2134-2141.	3.5	43
11	Mineral composition of Bulgarian wheat bread. European Food Research and Technology, 2001, 213, 244-245.	3.3	24
12	Effect of furfural on carbon metabolism key enzymes of lactose-assimilating yeasts. Enzyme and Microbial Technology, 2006, 39, 1108-1112.	3.2	23
13	Rapid Methods for Quality Assurance of Foods: the Next Decade with Polymerase Chain Reaction (PCR)-Based Food Monitoring. Food Analytical Methods, 2015, 8, 255-271.	2.6	20
14	Starch utilization routes in lactic acid bacteria: New insight by gene expression assay. Starch/Staerke, 2016, 68, 953-960.	2.1	20
15	Strain diversity of plantâ€associated <i>Lactiplantibacillus plantarum</i> . Microbial Biotechnology, 2021, 14, 1990-2008.	4.2	20
16	Strains selection of baker's yeast with improved technological properties. Food Research International, 1996, 29, 235-239.	6.2	17
17	Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms, 2021, 9, 1346.	3.6	16
18	Effect of Bulgarian propolis on the oral microflora in adolescents with plaque-induced gingivitis. Revista Brasileira De Farmacognosia, 2019, 29, 271-277.	1.4	15

ANGEL I ANGELOV

#	Article	IF	CITATIONS
19	Molecular Identification of Yeasts and Lactic Acid Bacteria Involved in the Production of Beninese Fermented Food Degue. Open Biotechnology Journal, 2017, 11, 94-104.	1.2	14
20	Aspergillus niger pH 2.1 optimum acid phosphatase with high affinity for phytate. Folia Microbiologica, 2006, 51, 541-545.	2.3	13
21	Molecular and in vitro assessment of some probiotic characteristics of amylolytic <i>Lactobacillus plantarum</i> strains from Bulgarian fermented products. Engineering in Life Sciences, 2018, 18, 820-830.	3.6	13
22	PCR revisited: a case for revalidation of PCR assays for microorganisms using identification of <i>Campylobacter</i> species as an exemplar. Quality Assurance and Safety of Crops and Foods, 2013, 5, 49-62.	3.4	10
23	Effect of furfural on nitrogen assimilating enzymes of the lactose utilizing yeasts Candida blankii 35 and Candida pseudotropicalis 11. Enzyme and Microbial Technology, 2008, 43, 284-288.	3.2	9
24	Formation of volatiles and fattyacids of therapeutic importance in the probiotic Lactobacillus plantarum LPcfr adapted to resist GIT conditions. Journal of Food Science and Technology, 2011, 48, 110-113.	2.8	9
25	Effects of Teff-Based Sourdoughs on Dough Rheology and Gluten-Free Bread Quality. Foods, 2022, 11, 1012.	4.3	9
26	Effect of furfural on the growth of lactose-utilizing Candida Blankii 35. World Journal of Microbiology and Biotechnology, 2004, 20, 219-223.	3.6	8
27	Proteomes of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> LBB.B5 Incubated in Milk at Optimal and Low Temperatures. MSystems, 2017, 2, .	3.8	8
28	Phytase production by Candida melibiosica 2491 alkalophylic strain. Emirates Journal of Food and Agriculture, 2013, 25, 342.	1.0	7
29	Biosynthesis of invertase by Saccharomyces cerevisiae with sugarcane molasses as substrate. World Journal of Microbiology and Biotechnology, 1993, 9, 662-663.	3.6	6
30	Towards harmonized approaches for mycotoxin analyses: an assessment. Quality Assurance and Safety of Crops and Foods, 2009, 1, 76-85.	3.4	6
31	Mutant Hansenula polymorpha Strain with Constitutive Alcohol Oxidase and Peroxisome Biosynthesis. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2002, 57, 858-862.	1.4	5
32	Biologically Active Compounds with Antitumor Activity in Propolis Extracts from Different Geographic Regions. Biotechnology and Biotechnological Equipment, 2013, 27, 4010-4013.	1.3	5
33	Mycoflora of fresh chokeberry (Aronia melanocarpa) and ochratoxin-producing ability ofPenicilliumisolates. Quality Assurance and Safety of Crops and Foods, 2015, 7, 123-131.	3.4	5
34	Targeting Genes of Cd Induced Oxidative Stress Response in Yeasts. Biotechnology and Biotechnological Equipment, 2013, 27, 3716-3724.	1.3	4
35	Modulation Of The Antioxidant Activity Of ЕFunctional Oat Beverage By Enrichment With Chokeberry Juice. Journal of Food Processing and Preservation, 0, , e16012.	2.0	2
36	Biopartikel: Eine Alternative zur Produktion nanoskaliger anorganischer Partikel. Chemie-Ingenieur-Technik, 2009, 81, 685-697.	0.8	1

ANGEL I ANGELOV

#	Article	IF	CITATIONS
37	Effect of Cd2+on the Antioxidant Status ofShizosaccharomyces Pombe. Biotechnology and Biotechnological Equipment, 2010, 24, 494-500.	1.3	1
38	Time lag model for batch bioreactor simulation accounting the effect of micro-organism mortality. Biotechnology and Biotechnological Equipment, 2015, 29, 195-199.	1.3	1
39	Safety Assessment and Regulations for Food Ingredients Derived from Plant In Vitro Systems. Reference Series in Phytochemistry, 2018, , 393-409.	0.4	1