Rémi Saurel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3946098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional properties of hemp protein concentrate obtained by alkaline extraction and successive ultrafiltration and sprayâ€drying. International Journal of Food Science and Technology, 2022, 57, 436-446.	1.3	9
2	Effect of biotic stress on the presence of secondary metabolites in field pea grains. Journal of the Science of Food and Agriculture, 2022, 102, 4942-4948.	1.7	6
3	Effect of Lactic Acid Fermentation on Legume Protein Properties, a Review. Fermentation, 2022, 8, 244.	1.4	30
4	Controlled release of riboflavin encapsulated in pea protein microparticles prepared by emulsion-enzymatic gelation process. Journal of Food Engineering, 2021, 292, 110276.	2.7	17
5	Pea Protein Extraction Assisted by Lactic Fermentation: Impact on Protein Profile and Thermal Properties. Foods, 2021, 10, 549.	1.9	30
6	Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. Applied Sciences (Switzerland), 2021, 11, 5778.	1.3	55
7	Highlighting Protective Effect of Encapsulation on Yeast Cell Response to Dehydration Using Synchrotron Infrared Microspectroscopy at the Single-Cell Level. Frontiers in Microbiology, 2020, 11, 1887.	1.5	6
8	Biophysical Stress Responses of the Yeast Lachancea thermotolerans During Dehydration Using Synchrotron-FTIR Microspectroscopy. Frontiers in Microbiology, 2020, 11, 899.	1.5	9
9	Hemp Seed as a Source of Food Proteins. Sustainable Agriculture Reviews, 2020, , 265-294.	0.6	5
10	The Effect of Highâ€Pressure Microfluidization Treatment on the Foaming Properties of Pea Albumin Aggregates. Journal of Food Science, 2019, 84, 2242-2249.	1,5	43
11	Hemp (<i>Cannabis sativa</i> L.) Protein Extraction Conditions Affect Extraction Yield and Protein Quality. Journal of Food Science, 2019, 84, 3682-3690.	1.5	42
12	Microfluidization as Homogenization Technique in Pea Globulin-Based Emulsions. Food and Bioprocess Technology, 2019, 12, 877-882.	2.6	31
13	Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Food Research International, 2019, 119, 444-454.	2.9	23
14	Gelation behaviors of denaturated pea albumin and globulin fractions during transglutaminase treatment. Food Hydrocolloids, 2018, 77, 636-645.	5.6	55
15	Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fluidization. Innovative Food Science and Emerging Technologies, 2018, 47, 292-300.	2.7	54
16	Improving total glutathione and trehalose contents in Saccharomyces cerevisiae cells to enhance their resistance to fluidized bed drying. Process Biochemistry, 2018, 69, 45-51.	1.8	18
17	Acid gelation of mixed thermal aggregates of pea globulins and β-lactoglobulin. Food Hydrocolloids, 2018, 85, 120-128.	5.6	29
18	Interactions in casein micelle – Pea protein system (part I): Heat-induced denaturation and aggregation. Food Hydrocolloids, 2017, 67, 229-242.	5.6	35

Rémi Saurel

#	Article	IF	CITATIONS
19	Understanding the responses of <i>Saccharomyces cerevisiae</i> yeast strain during dehydration processes using synchrotron infrared spectroscopy. Analyst, The, 2017, 142, 3620-3628.	1.7	20
20	Interactions in casein micelle - Pea protein system (Part II): Mixture acid gelation with glucono-δ-lactone. Food Hydrocolloids, 2017, 73, 344-357.	5.6	30
21	Design of new sensitive α,β-unsaturated carbonyl 1,8-naphtalimide fluorescent probes for thiol bioimaging. Sensors and Actuators B: Chemical, 2017, 242, 865-871.	4.0	10
22	Heat-Induced Soluble Protein Aggregates from Mixed Pea Globulins and β-Lactoglobulin. Journal of Agricultural and Food Chemistry, 2016, 64, 2780-2791.	2.4	90
23	Size measuring techniques as tool to monitor pea proteins intramolecular crosslinking by transglutaminase treatment. Food Chemistry, 2016, 190, 197-200.	4.2	18
24	Aqueous two-phase system cold-set gelation using natural and recombinant probiotic lactic acid bacteria as a gelling agent. Colloids and Surfaces B: Biointerfaces, 2016, 141, 338-344.	2.5	7
25	Monitoring of transglutaminase crosslinking reaction by 1H NMR spectroscopy on model substrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 69-74.	2.3	5
26	Protection of living yeast cells by micro-organized shells of natural polyelectrolytes. Process Biochemistry, 2015, 50, 1528-1536.	1.8	14
27	Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocolloids, 2015, 46, 233-243.	5.6	124
28	Native-state pea albumin and globulin behavior upon transglutaminase treatment. Process Biochemistry, 2015, 50, 1284-1292.	1.8	47
29	Preservation of viability and anti-Listeria activity of lactic acid bacteria, Lactococcus lactis and Lactobacillus paracasei, entrapped in gelling matrices of alginate or alginate/caseinate. Food Control, 2015, 47, 7-19.	2.8	29
30	Partition of volatile compounds in pea globulin–maltodextrin aqueous two-phase system. Food Chemistry, 2014, 164, 406-412.	4.2	8
31	Encapsulation and Oxidative Stability of PUFA-Rich Oil Microencapsulated by Spray Drying Using Pea Protein and Pectin. Food and Bioprocess Technology, 2014, 7, 1505-1517.	2.6	84
32	Design of biopolymeric matrices entrapping bioprotective lactic acid bacteria to control Listeria monocytogenes growth: Comparison of alginate and alginate-caseinate matrices entrapping Lactococcus lactis subsp. lactis cells. Food Control, 2014, 37, 200-209.	2.8	21
33	Preferential localization of Lactococcus lactis cells entrapped in a caseinate/alginate phase separated system. Colloids and Surfaces B: Biointerfaces, 2013, 109, 266-272.	2.5	23
34	The effects of sodium alginate and calcium levels on pea proteins cold-set gelation. Food Hydrocolloids, 2013, 31, 446-457.	5.6	28
35	Thermal Denaturation of Pea Globulins (<i>Pisum sativum</i> L.)—Molecular Interactions Leading to Heat-Induced Protein Aggregation. Journal of Agricultural and Food Chemistry, 2013, 61, 1196-1204. ————————————————————————————————————	2.4	136
36	Pea (Pisum sativum, L.) Protein Isolate Stabilized Emulsions: A Novel System for Microencapsulation of Lipophilic Ingredients by Spray Drying. Food and Bioprocess Technology, 2012, 5, 2211-2221.	2.6	107

Rémi Saurel

#	Article	IF	CITATIONS
37	Properties of spray-dried food flavours microencapsulated with two-layered membranes: Roles of interfacial interactions and water. Food Chemistry, 2012, 132, 1713-1720.	4.2	79
38	Protein aggregation induced by phase separation in a pea proteins–sodium alginate–water ternary system. Food Hydrocolloids, 2012, 28, 333-343.	5.6	37
39	Effect of pea proteins extraction and vicilin/legumin fractionation on the phase behavior in admixture with alginate. Food Hydrocolloids, 2012, 29, 335-346.	5.6	45
40	Effect of high methoxyl pectin on pea protein in aqueous solution and at oil/water interface. Carbohydrate Polymers, 2010, 80, 817-827.	5.1	82
41	Utilisation of pectin coating to enhance spray-dry stability of pea protein-stabilised oil-in-water emulsions. Food Chemistry, 2010, 122, 447-454.	4.2	87
42	Interfacial and Emulsifying Characteristics of Acid-treated Pea Protein. Food Biophysics, 2009, 4, 273-280.	1.4	81
43	Influence of impregnation solution viscosity and osmolarity on solute uptake during vacuum impregnation of apple cubes (var. Granny Smith). Journal of Food Engineering, 2008, 86, 475-483.	2.7	39
44	Firming of fruit tissues by vacuum-infusion of pectin methylesterase: Visualisation of enzyme action. Food Chemistry, 2008, 109, 368-378.	4.2	56
45	Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 2007, 40, 1107-1121.	2.9	1,762
46	Incorporation of pectinmethylesterase in apple tissue either by soaking or by vacuum-impregnation. Enzyme and Microbial Technology, 2006, 38, 610-616.	1.6	30
47	Modelling of French Emmental cheese water activity during salting and ripening periods. Journal of Food Engineering, 2004, 63, 163-170.	2.7	49
48	Experimental study and modeling of nisin diffusion in agarose gels. Journal of Food Engineering, 2004, 63, 185-190.	2.7	40
49	Controlled Diffusion of an Antimicrobial Peptide from a Biopolymer Film. Chemical Engineering Research and Design, 2003, 81, 1099-1104.	2.7	18
50	Heat transfer study and modeling during Emmental ripening. Journal of Food Engineering, 2003, 57, 249-255.	2.7	12
51	Experimental study and modeling of effective NaCl diffusion coefficients values during Emmental cheese brining. Journal of Food Engineering, 2003, 60, 307-313.	2.7	45
52	Vacuum Impregnation Pretreatment with Pectinmethylesterase to Improve Firmness of Pasteurized Fruits. Journal of Food Science, 2003, 68, 716-721.	1.5	59
53	Modeling of dewatering and impregnation soaking process (osmotic dehydration). Food Research International, 1994, 27, 207-209.	2.9	31