Ming-Zong Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3945643/publications.pdf

Version: 2024-02-01

71 papers

3,157 citations

34 h-index 55 g-index

74 all docs

74 docs citations

times ranked

74

3593 citing authors

#	Article	IF	CITATIONS
1	Infectionâ€induced inflammation from specific inborn errors of immunity to COVIDâ€19. FEBS Journal, 2021, 288, 5021-5041.	2.2	12
2	Transcriptomic Analysis and C-Terminal Epitope Tagging Reveal Differential Processing and Signaling of Endogenous TLR3 and TLR7. Frontiers in Immunology, 2021, 12, 686060.	2.2	3
3	Promyelocytic leukemia protein targets MK2 to promote cytotoxicity. EMBO Reports, 2021, 22, e52254.	2.0	3
4	HIF-2α is indispensable for regulatory T cell function. Nature Communications, 2020, 11, 5005.	5.8	76
5	Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death and Disease, 2020, $11,305.$	2.7	24
6	Deltex1 suppresses T cell function and is a biomarker for diagnosis and disease activity of systemic lupus erythematosus. Rheumatology, 2019, 58, 719-728.	0.9	5
7	c-FLIP is a target of the E3 ligase deltex1 in gastric cancer. Cell Death and Disease, 2018, 9, 135.	2.7	28
8	IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nature Communications, 2018, 9, 463.	5.8	19
9	Hypoxia-inducible factor $1\hat{l}\pm$ plays a predominantly negative role in regulatory T cell functions. Journal of Leukocyte Biology, 2018, 104, 911-918.	1.5	25
10	Ubiquitination of tumor suppressor PML regulates prometastatic and immunosuppressive tumor microenvironment. Journal of Clinical Investigation, 2017, 127, 2982-2997.	3.9	55
11	Measuring NLR Oligomerization V: In Situ Proximity Ligation Assay. Methods in Molecular Biology, 2016, 1417, 185-195.	0.4	5
12	Tumour suppressor death-associated protein kinase targets cytoplasmic HIF-1α for Th17 suppression. Nature Communications, 2016, 7, 11904.	5.8	20
13	MST3 promotes proliferation and tumorigenicity through the VAV2/Rac1 signal axis in breast cancer. Oncotarget, 2016, 7, 14586-14604.	0.8	37
14	Deltex1 antagonizes HIF-1 \hat{l} ± and sustains the stability of regulatory T cells in vivo. Nature Communications, 2015, 6, 6353.	5.8	53
15	Cellular FLIP Inhibits Myeloid Cell Activation by Suppressing Selective Innate Signaling. Journal of Immunology, 2015, 195, 2612-2623.	0.4	18
16	Deltex1 Promotes Protein Kinase CÎ, Degradation and Sustains Casitas B-Lineage Lymphoma Expression. Journal of Immunology, 2014, 193, 1672-1680.	0.4	20
17	Regulation of inflammation by DAPK. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 357-363.	2.2	38
18	Participation of c-FLIP in NLRP3 and AIM2 inflammasome activation. Cell Death and Differentiation, 2014, 21, 451-461.	5.0	54

#	Article	IF	Citations
19	Inability to resolve specific infection generates innate immunodeficiency syndrome in Xiapâ^'/â^' mice. Blood, 2014, 124, 2847-2857.	0.6	24
20	Selective inhibition of the NLRP3 inflammasome by targeting to promyelocytic leukemia protein in mouse and human. Blood, 2013, 121, 3185-3194.	0.6	42
21	Removal of Syndecan-1 Promotes TRAIL-Induced Apoptosis in Myeloma Cells. Journal of Immunology, 2012, 188, 2914-2921.	0.4	27
22	Paxillin phosphorylation by <scp>JNK</scp> and p38 is required for <scp>NFAT</scp> activation. European Journal of Immunology, 2012, 42, 2165-2175.	1.6	10
23	CS18-2. Inhibition of Th17 differentiation and EAE development by tumor suppressor death-associated protein kinase. Cytokine, 2011, 56, 109.	1.4	0
24	Tumor suppressor death-associated protein kinase is required for full IL-1 \hat{l}^2 production. Blood, 2011, 117, 960-970.	0.6	58
25	Ezrin is a negative regulator of death receptor-induced apoptosis. Oncogene, 2010, 29, 1374-1383.	2.6	25
26	Phosphorylation of paxillin by JNK and p38 is essential for full T lymphocyte activation. FASEB Journal, 2010, 24, lb184.	0.2	0
27	Impaired TNFα-induced A20 expression in E1A/Ras-transformed cells. British Journal of Cancer, 2009, 101, 1555-1564.	2.9	12
28	Deltex1 Is a Target of the Transcription Factor NFAT that Promotes T Cell Anergy. Immunity, 2009, 31, 72-83.	6.6	58
29	Selective activation of NFAT by promyelocytic leukemia protein. Oncogene, 2008, 27, 3821-3830.	2.6	10
30	The Tumor Suppressor Death-Associated Protein Kinase Targets to TCR-Stimulated NF-κB Activation. Journal of Immunology, 2008, 180, 3238-3249.	0.4	48
31	Attenuation of Bone Mass and Increase of Osteoclast Formation in Decoy Receptor 3 Transgenic Mice. Journal of Biological Chemistry, 2007, 282, 2346-2354.	1.6	39
32	Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO Journal, 2007, 26, 1660-1669.	3.5	52
33	Reactive oxygen species promote raft formation in T lymphocytesâ [*] †. Free Radical Biology and Medicine, 2007, 42, 936-944.	1.3	51
34	Attenuation of Th1 Response in Decoy Receptor 3 Transgenic Mice. Journal of Immunology, 2005, 175, 5135-5145.	0.4	58
35	Deltex Regulates T-Cell Activation by Targeted Degradation of Active MEKK1. Molecular and Cellular Biology, 2005, 25, 1367-1378.	1.1	53
36	Phosphatidylinositide 3-Kinase Priming Couples c-FLIP to T Cell Activation. Journal of Biological Chemistry, 2004, 279, 13-18.	1.6	36

#	Article	IF	CITATIONS
37	c-FLICE inhibitory protein expression inhibits T-cell activation. Cell Death and Differentiation, 2004, 11, 69-79.	5.0	29
38	Sensitization of Cells to TRAIL-induced Apoptosis by Decoy Receptor 3. Journal of Biological Chemistry, 2004, 279, 44211-44218.	1.6	11
39	Sensitization of Cells to TRAIL-induced Apoptosis by Decoy Receptor 3. Journal of Biological Chemistry, 2004, 279, 44211-44218.	1.6	4
40	DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation. Oncogene, 2003, 22, 8168-8177.	2.6	150
41	Promyelocytic Leukemia Protein (PML) Functions as a Glucocorticoid Receptor Co-activator by Sequestering Daxx to the PML Oncogenic Domains (PODs) to Enhance Its Transactivation Potential. Journal of Biological Chemistry, 2003, 278, 15958-15965.	1.6	74
42	Interleukin-3 Stimulation of mcl-1 Gene Transcription Involves Activation of the PU.1 Transcription Factor through a p38 Mitogen-Activated Protein Kinase-Dependent Pathway. Molecular and Cellular Biology, 2003, 23, 1896-1909.	1.1	78
43	Nuclear Factor of Activated T Cells c Is a Target of p38 Mitogen-Activated Protein Kinase in T Cells. Molecular and Cellular Biology, 2003, 23, 6442-6454.	1.1	67
44	Involvement of p38 mitogen–activated protein kinase in different stages of thymocyte development. Blood, 2003, 101, 970-976.	0.6	18
45	Increased p300 Expression Inhibits Glucocorticoid Receptor-T-Cell Receptor Antagonism but Does Not Affect Thymocyte Positive Selection. Molecular and Cellular Biology, 2002, 22, 4556-4566.	1.1	9
46	c-Jun NH2-terminal Kinase Activation Leads to a FADD-dependent but Fas Ligand-independent Cell Death in Jurkat T Cells. Journal of Biological Chemistry, 2001, 276, 8350-8357.	1.6	37
47	Multiple Signals Required for Cyclic AMP-Responsive Element Binding Protein (CREB) Binding Protein Interaction Induced by CD3/CD28 Costimulation. Journal of Immunology, 2001, 166, 284-292.	0.4	37
48	CREB Is One Component of the Binding Complex of the Ces-2/E2A-HLF Binding Element and Is an Integral Part of the Interleukin-3 Survival Signal. Molecular and Cellular Biology, 2001, 21, 4636-4646.	1.1	36
49	p38 Mitogen-activated Protein Kinase Is Involved in Fas Ligand Expression. Journal of Biological Chemistry, 1999, 274, 25769-25776.	1.6	72
50	NF-κB-dependent Fas ligand expression. European Journal of Immunology, 1999, 29, 2948-2956.	1.6	68
51	Atypical signaling defects prevent IL-2 gene expression inlpr/lpr CD4-CD8-cells. Journal of Biomedical Science, 1998, 5, 297-304.	2.6	5
52	Atypical Signaling Defects Prevent IL-2 Gene Expression in <i>lpr/lpr</i> CD4–CD8– Cells. Journal of Biomedical Science, 1998, 5, 297-304.	2.6	7
53	Apoptotic Signal of Fas Is Not Mediated by Ceramide. Blood, 1998, 91, 2658-2663.	0.6	59
54	Mitogen-activated Protein Kinase Kinase Antagonized Fas-associated Death Domain Protein–mediated Apoptosis by Induced FLICE-inhibitory Protein Expression. Journal of Experimental Medicine, 1998, 188, 1795-1802.	4.2	122

#	Article	IF	CITATIONS
55	Conserved Tâ€cell receptor class II major histocompatibility complex contact detected in a Tâ€lymphocyte population. Immunology, 1998, 95, 185-192.	2.0	O
56	Overexpression of mitogen-activated protein kinase kinase kinase reversed cAMP inhibiton of NF-χB in T cells. European Journal of Immunology, 1997, 27, 222-226.	1.6	29
57	TPA DID NOT INHIBIT CERAMIDE-INDUCED APOPTOSIS IN LYMPHOBLASTOID CELL CEM. Biochemical Society Transactions, 1996, 24, 562S-562S.	1.6	0
58	Selective contact during TCR recognition. International Immunology, 1996, 8, 45-55.	1.8	1
59	Limited Regulatory Effect of T Cell Receptor-Derived Peptides. Cellular Immunology, 1995, 161, 218-225.	1.4	0
60	c-Jun N-terminal Kinase but Not Mitogen-activated Protein Kinase Is Sensitive to cAMP Inhibition in T Lymphocytes. Journal of Biological Chemistry, 1995, 270, 18094-18098.	1.6	97
61	A peptide binding weakly to the major histocompatibility molecule augments T cell responses. European Journal of Immunology, 1994, 24, 355-361.	1.6	9
62	Flexibility of the T cell receptor repertoire. European Journal of Immunology, 1994, 24, 1604-1611.	1.6	11
63	T cell epitope selection: dominance may be determined by both affinity for major histocompatibility complex and stoichiometry of epitope. European Journal of Immunology, 1992, 22, 943-949.	1.6	36
64	Modulation of restricted class II T cell responses by peptides derived from self class II molecule. European Journal of Immunology, 1992, 22, 2527-2531.	1.6	4
65	Efficiency of cytoplasmic delivery by pH-sensitive liposomes to cells in culture. Pharmaceutical Research, 1990, 07, 824-834.	1.7	172
66	Identical peptides recognized by MHC class I- and II-restricted T cells Journal of Experimental Medicine, 1989, 170, 279-289.	4.2	67
67	T cell receptor gene usage in the response to lambda repressor cl protein. An apparent bias in the usage of a V alpha gene element Journal of Experimental Medicine, 1988, 168, 1081-1097.	4.2	56
68	Immunological self, nonself discrimination. Science, 1987, 235, 865-870.	6.0	292
69	Interaction of peptide antigens and class II major histocompatibility complex antigens. Nature, 1986, 324, 260-262.	13.7	214
70	A Role for Anti-Inflammatory Agents and Cyclic Amp in Regulating Fibronectin-Mediated Phagocytosis. Immunopharmacology and Immunotoxicology, 1981, 3, 193-204.	0.8	5
71	Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages Journal of Cell Biology, 1980, 87, 427-433.	2.3	177