Nicolas Flament

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3945465/publications.pdf

Version: 2024-02-01

		186209	182361
58	2,703 citations	28	51
papers	citations	h-index	g-index
69	69	69	2459
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A review of observations and models of dynamic topography. Lithosphere, 2013, 5, 189-210.	0.6	277
2	A case for late-Archaean continental emergence from thermal evolution models and hypsometry. Earth and Planetary Science Letters, 2008, 275, 326-336.	1.8	179
3	Ridge subduction sparked reorganization of the Pacific plateâ€mantle system 60–50 million years ago. Geophysical Research Letters, 2015, 42, 1732-1740.	1.5	170
4	Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews, 2016 , 162 , 293 - 337 .	4.0	151
5	Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers, 2019, 10, 989-1013.	4.3	126
6	Spreading continents kick-started plate tectonics. Nature, 2014, 513, 405-408.	13.7	116
7	Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences, 2017, 14, 5425-5439.	1.3	111
8	Tectonic speed limits from plate kinematic reconstructions. Earth and Planetary Science Letters, 2015, 418, 40-52.	1.8	102
9	Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters, 2014, 387, 107-119.	1.8	92
10	Assimilating lithosphere and slab history in 4-D Earth models. Physics of the Earth and Planetary Interiors, 2015, 238, 8-22.	0.7	83
11	Insights on the kinematics of the Indiaâ€Eurasia collision from global geodynamic models. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	74
12	A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 2016, 533, 239-242.	13.7	73
13	Influence of subduction history on South American topography. Earth and Planetary Science Letters, 2015, 430, 9-18.	1.8	67
14	The evolution of the 87Sr/86Sr of marine carbonates does not constrain continental growth. Precambrian Research, 2013, 229, 177-188.	1,2	63
15	Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems, 2015, 16, 1465-1489.	1.0	58
16	Origin and evolution of the deep thermochemical structure beneath Eurasia. Nature Communications, 2017, 8, 14164.	5.8	55
17	Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research, 2018, 53, 225-251.	3.0	55
18	Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 2016, 441, 60-70.	1.8	54

#	Article	IF	Citations
19	Absolute plate motions since 130 Ma constrained by subduction zone kinematics. Earth and Planetary Science Letters, 2015, 418, 66-77.	1.8	53
20	Global tectonic reconstructions with continuously deforming and evolving rigid plates. Computers and Geosciences, 2018, 116, 32-41.	2.0	48
21	Constraining Absolute Plate Motions Since the Triassic. Journal of Geophysical Research: Solid Earth, 2019, 124, 7231-7258.	1.4	43
22	The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLoS ONE, 2016, 11, e0150883.	1.1	41
23	Influence of mantle flow on the drainage of eastern <scp>A</scp> ustralia since the <scp>J</scp> urassic <scp>P</scp> eriod. Geochemistry, Geophysics, Geosystems, 2017, 18, 280-305.	1.0	37
24	The Dynamic Topography of Eastern China Since the Latest Jurassic Period. Tectonics, 2018, 37, 1274-1291.	1.3	35
25	Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework. Geological Magazine, 2019, 156, 331-354.	0.9	33
26	Circumâ€Arctic mantle structure and longâ€wavelength topography since the Jurassic. Journal of Geophysical Research: Solid Earth, 2014, 119, 7889-7908.	1.4	31
27	Present-day dynamic topography and lower-mantle structure from palaeogeographically constrained mantle flow models. Geophysical Journal International, 2019, 216, 2158-2182.	1.0	31
28	Lower crustal flow kept Archean continental flood basalts at sea level. Geology, 2011, 39, 1159-1162.	2.0	30
29	Northwest Pacific-Izanagi plate tectonics since Cretaceous times from western Pacific mantle structure. Earth and Planetary Science Letters, 2022, 583, 117445.	1.8	30
30	Large fluctuations of shallow seas in low-lying Southeast Asia driven by mantle flow. Geochemistry, Geophysics, Geosystems, 2016, 17, 3589-3607.	1.0	28
31	Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the midâ€Cretaceous. Tectonics, 2017, 36, 929-944.	1.3	28
32	Plate tectonics and mantle controls on plume dynamics. Earth and Planetary Science Letters, 2020, 547, 116439.	1.8	27
33	Spatio-temporal evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South China Block. Earth-Science Reviews, 2021, 217, 103605.	4.0	24
34	Reconstructing seafloor age distributions in lost ocean basins. Geoscience Frontiers, 2021, 12, 769-780.	4.3	23
35	The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics, 2019, 761, 108-121.	0.9	22
36	Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes. Journal of Geodynamics, 2018, 121, 115-132.	0.7	21

#	Article	IF	CITATIONS
37	Long-term Phanerozoic sea level change from solid Earth processes. Earth and Planetary Science Letters, 2022, 584, 117451.	1.8	21
38	Cenozoic uplift of south Western Australia as constrained by river profiles. Tectonophysics, 2014, 622, 186-197.	0.9	20
39	On the Scales of Dynamic Topography in Wholeâ€Mantle Convection Models. Geochemistry, Geophysics, Geosystems, 2018, 19, 3140-3163.	1.0	20
40	Assembly of the basal mantle structure beneath Africa. Nature, 2022, 603, 846-851.	13.7	19
41	The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence. Solid Earth, 2017, 8, 235-254.	1.2	17
42	A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution. Solid Earth, 2022, 13, 1127-1159.	1.2	16
43	Quantitative stratigraphic analysis in a source-to-sink numerical framework. Geoscientific Model Development, 2019, 12, 2571-2585.	1.3	13
44	Alignment between seafloor spreading directions and absolute plate motions through time. Geophysical Research Letters, 2016, 43, 1472-1480.	1.5	12
45	Drainage and Sedimentary Responses to Dynamic Topography. Geophysical Research Letters, 2019, 46, 14385-14394.	1.5	11
46	Coupled Evolution of Plate Tectonics and Basal Mantle Structure. Geochemistry, Geophysics, Geosystems, 2021, 22, .	1.0	10
47	Linking plate tectonics and mantle flow to Earth's topography. Geology, 2014, 42, 927-928.	2.0	8
48	The evolution of basal mantle structure in response to supercontinent aggregation and dispersal. Scientific Reports, 2021, 11, 22967.	1.6	7
49	A deep subaqueous fan depositional model for the Palaeoarchaean (3.46 Ga) Marble Bar Cherts, Warrawoona Group, Western Australia. Geological Magazine, 2012, 149, 743-749.	0.9	6
50	Correspondence: Reply to â€~Numerical modelling of the PERM anomaly and the Emeishan large igneous province'. Nature Communications, 2017, 8, 822.	5.8	6
51	The role of deep Earth dynamics in driving the flooding and emergence of New Guinea since the Jurassic. Earth and Planetary Science Letters, 2017, 479, 273-283.	1.8	5
52	The influence of mantle flow on intracontinental basins: Three examples from Australia. Basin Research, 2021, 33, 1429-1453.	1.3	5
53	Modelling the role of dynamic topography and eustasy in the evolution of the Great Artesian Basin. Basin Research, 2021, 33, 3378-3405.	1.3	4
54	The deep roots of Earth's surface. Nature Geoscience, 2019, 12, 787-788.	5.4	3

#	Article	IF	CITATIONS
55	Mapping global kimberlite potential from reconstructions of mantle flow over the past billion years. PLoS ONE, 2022, 17, e0268066.	1.1	3
56	Tectonics and geodynamics of the eastern Tethys and northern Gondwana since the Jurassic. ASEG Extended Abstracts, 2018, 2018, 1-6.	0.1	1
57	Cenozoic surface uplift from south Western Australian rivers. ASEG Extended Abstracts, 2015, 2015, 1-4.	0.1	O
58	Modelling Rifting Sequence Stratigraphy Coupled with Surface Process and Thermo-Mechanical Modelling. ASEG Extended Abstracts, 2018, 2018, 1-1.	0.1	О