
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3945028/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large modulation of the chemical and electronic sensitization of TiO2/Ag/NiO nanostructure via in situ hydrothermal-induced heterointerface engineering. Chemical Engineering Journal, 2022, 430, 132690.	6.6	12
2	Advanced Polymer and Perovskite Solar Cells. Energies, 2022, 15, 615.	1.6	0
3	Identifying optimal photovoltaic technologies for underwater applications. IScience, 2022, 25, 104531.	1.9	5
4	Investigation of impediment factors in commercialization of reinforced adhesives. Polymer Testing, 2021, 93, 106995.	2.3	7
5	CO2 doping of organic interlayers for perovskite solar cells. Nature, 2021, 594, 51-56.	13.7	120
6	Impacts of thermoplastics content on mechanical properties of continuous fiber-reinforced thermoplastic composites. Composites Part B: Engineering, 2021, 216, 108859.	5.9	27
7	Impacts of colorants on mechanical properties of epoxy-based fiber composites. Applied Surface Science Advances, 2021, 6, 100178.	2.9	2
8	A highly efficient perovskite photovoltaic-aqueous Li/Na-ion battery system. Energy Storage Materials, 2020, 24, 557-564.	9.5	26
9	Perovskite Solar Cells with Enhanced Fill Factors Using Polymer-Capped Solvent Annealing. ACS Applied Energy Materials, 2020, 3, 7231-7238.	2.5	19
10	Scalable, Highly Conductive, and Micropatternable MXene Films for Enhanced Electromagnetic Interference Shielding. Matter, 2020, 3, 546-557.	5.0	127
11	Efficiency Limits of Underwater Solar Cells. Joule, 2020, 4, 840-849.	11.7	47
12	A Promising Carbon/gâ€C ₃ N ₄ Composite Negative Electrode for a Longâ€Life Sodiumâ€Ion Battery. Angewandte Chemie, 2019, 131, 13865-13871.	1.6	29
13	A Promising Carbon/gâ€C ₃ N ₄ Composite Negative Electrode for a Longâ€Life Sodiumâ€lon Battery. Angewandte Chemie - International Edition, 2019, 58, 13727-13733.	7.2	70
14	Underwater Organic Solar Cells via Selective Removal of Electron Acceptors near the Top Electrode. ACS Energy Letters, 2019, 4, 1034-1041.	8.8	25
15	Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale, 2019, 11, 20295-20300.	2.8	81
16	Binary Solvent Additives Treatment Boosts the Efficiency of PTB7:PCBM Polymer Solar Cells to Over 9.5%. Solar Rrl, 2018, 2, 1700144.	3.1	47
17	A highly efficient polymer non-fullerene organic solar cell enhanced by introducing a small molecule as a crystallizing-agent. Materials Today, 2018, 21, 79-87.	8.3	52
18	Three-Phase Morphology Evolution in Sequentially Solution-Processed Polymer Photodetector: Toward Low Dark Current and High Photodetectivity. ACS Applied Materials & Interfaces, 2018, 10, 3856-3864.	4.0	50

#	Article	IF	CITATIONS
19	Spray coating of the PCBM electron transport layer significantly improves the efficiency of p-i-n planar perovskite solar cells. Nanoscale, 2018, 10, 11342-11348.	2.8	76
20	Colorful Organic Solar Cells Employing FÃ \P rster Resonance Energy Transfer Dye Molecule. , 2018, , .		0
21	Potential Dip in Organic Photovoltaics Probed by Cross-sectional Kelvin Probe Force Microscopy. Nanoscale Research Letters, 2018, 13, 228.	3.1	2
22	Layerâ€byâ€Layer Assembly of Crossâ€Functional Semiâ€transparent MXeneâ€Carbon Nanotubes Composite Fi for Nextâ€Generation Electromagnetic Interference Shielding. Advanced Functional Materials, 2018, 28, 1803360.	lms 7.8	407
23	PEOz-PEDOT:PSS Composite Layer: A Route to Suppressed Hysteresis and Enhanced Open-Circuit Voltage in a Planar Perovskite Solar Cell. ACS Applied Materials & Interfaces, 2018, 10, 25329-25336.	4.0	19
24	Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale, 2017, 9, 4236-4243.	2.8	135
25	Colorful polymer solar cells employing an energy transfer dye molecule. Nano Energy, 2017, 38, 36-42.	8.2	34
26	A Cytop Insulating Tunneling Layer for Efficient Perovskite Solar Cells. Small Methods, 2017, 1, 1700244.	4.6	42
27	Stable Graphene-Two-Dimensional Multiphase Perovskite Heterostructure Phototransistors with High Gain. Nano Letters, 2017, 17, 7330-7338.	4.5	88
28	Highly improved lifetimes of solar cells comprising post-additive-soaked PTB7-F20:PC 71 BM bulk heterojunction materials. Chemical Physics Letters, 2017, 690, 42-46.	1.2	0
29	Highâ€Performance Integrated Perovskite and Organic Solar Cells with Enhanced Fill Factors and Nearâ€infrared Harvesting. Advanced Materials, 2016, 28, 3159-3165.	11.1	84
30	Air‣table Organic Solar Cells Using an Iodineâ€Free Solvent Additive. Advanced Energy Materials, 2016, 6, 1600970.	10.2	39
31	Achieving long-term stable perovskite solar cells via ion neutralization. Energy and Environmental Science, 2016, 9, 1258-1263.	15.6	279
32	Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Solar Energy Materials and Solar Cells, 2016, 144, 309-315.	3.0	81
33	Improved Carrier Dynamics and High Solar Cell Performance in Postadditive-Soaked PTB7:PC71BM Bulk Heterojunction Materials. Journal of Physical Chemistry C, 2015, 119, 12896-12903.	1.5	13
34	Polymer Solar Cells: Simplified Tandem Polymer Solar Cells with an Ideal Self-Organized Recombination Layer (Adv. Mater. 8/2015). Advanced Materials, 2015, 27, 1468-1468.	11.1	1
35	Simplified Tandem Polymer Solar Cells with an Ideal Selfâ€Organized Recombination Layer. Advanced Materials, 2015, 27, 1408-1413.	11.1	111
36	Overcoming the Lightâ€Soaking Problem in Inverted Polymer Solar Cells by Introducing a Heavily Doped Titanium Subâ€Oxide Functional Layer. Advanced Energy Materials, 2015, 5, 1401298.	10.2	49

#	Article	IF	CITATIONS
37	Solar Cells: A Depletion-Free, Ionic, Self-Assembled Recombination Layer for Tandem Polymer Solar Cells (Adv. Energy Mater. 5/2014). Advanced Energy Materials, 2014, 4, .	10.2	1
38	A Depletionâ€Free, Ionic, Selfâ€Assembled Recombination Layer for Tandem Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1301226.	10.2	28
39	Long-term stable polymer solar cells with significantly reduced burn-in loss. Nature Communications, 2014, 5, 5688.	5.8	131
40	Effect of solvent on large-area polymer–fullerene solar cells fabricated by a slot-die coating method. Solar Energy Materials and Solar Cells, 2014, 126, 107-112.	3.0	25
41	Flexible polymer solar cell modules with patterned vanadium suboxide layers deposited by an electro-spray printing method. Solar Energy Materials and Solar Cells, 2014, 130, 555-560.	3.0	17
42	Topâ€Down Approach for Nanophase Reconstruction in Bulk Heterojunction Solar Cells. Advanced Materials, 2014, 26, 6275-6283.	11.1	122
43	Dark currents in bulk heterojunction devices for imaging applications: The effect of a cathode interfacial layer. Current Applied Physics, 2014, 14, 649-652.	1.1	0
44	Seamless polymer solar cell module architecture built upon self-aligned alternating interfacial layers. Energy and Environmental Science, 2013, 6, 1152.	15.6	28
45	Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Organic Electronics, 2013, 14, 74-79.	1.4	62
46	Biased internal potential distributions in a bulk-heterojunction organic solar cell incorporated with a TiOx interlayer. Applied Physics Letters, 2012, 100, .	1.5	26
47	In-Depth Study on the Effect of Active-Area Scale-Down of Solution-Processed \$hbox{TiO}_{x}\$. IEEE Electron Device Letters, 2012, 33, 869-871.	2.2	4
48	Synergistic Effect of Processing Additives and Optical Spacers in Bulkâ€Heterojunction Solar Cells. Advanced Energy Materials, 2012, 2, 1420-1424.	10.2	27
49	Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell. Physical Chemistry Chemical Physics, 2012, 14, 10547.	1.3	15
50	New series connection method for bulk-heterojunction polymer solar cell modules. Solar Energy Materials and Solar Cells, 2012, 98, 208-211.	3.0	9
51	Improved Resistive Switching Properties of Solution-Processed TiO _x Film by Incorporating Atomic Layer Deposited TiO ₂ layer. Japanese Journal of Applied Physics, 2011, 50, 046504.	0.8	7
52	Direct observation of internal potential distributions in a bulk heterojunction solar cell. Applied Physics Letters, 2011, 99, .	1.5	38
53	Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Nanotechnology, 2011, 22, 254023.	1.3	226
54	Resistive switching characteristics of solution-processed TiOx for next-generation non-volatile memory application; transparency, flexibility, and nano-scale memory feasibility. Microelectronic Engineering, 2011, 88, 1143-1147.	1.1	26

#	Article	IF	CITATIONS
55	Flexible resistive random access memory using solution-processed TiOx with Al top electrode on Ag layer-inserted indium-zinc-tin-oxide-coated polyethersulfone substrate. Applied Physics Letters, 2011, 99, .	1.5	17
56	Resistive Switching Characteristics of Solution-Processed Transparent TiO[sub x] for Nonvolatile Memory Application. Journal of the Electrochemical Society, 2010, 157, H1042.	1.3	33
57	Resistive switching characteristics of solution-processible TiO <inf>x</inf> using nano-scale via-hole structures. , 2009, , .		Ο
58	A Compact Electron Transport Layer Using a Heated Tinâ€Oxide Colloidal Solution for Efficient Perovskite Solar Cells. Solar Rrl, 0, , 2100794.	3.1	2