Milica Velimirovic Fanfani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3943963/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	COST Action PRIORITY: An EU Perspective on Micro- and Nanoplastics as Global Issues. Microplastics, 2022, 1, 282-290.	4.2	12
2	Recent developments in mass spectrometry for the characterization of micro- and nanoscale plastic debris in the environment. Analytical and Bioanalytical Chemistry, 2021, 413, 7-15.	3.7	15
3	Mass spectrometry as a powerful analytical tool for the characterization of indoor airborne microplastics and nanoplastics. Journal of Analytical Atomic Spectrometry, 2021, 36, 695-705.	3.0	31
4	Characterization of Gold Nanorods Conjugated with Synthetic Glycopolymers Using an Analytical Approach Based on spICP-SFMS and EAF4-MALS. Nanomaterials, 2021, 11, 2720.	4.1	2
5	Detection of microplastics using inductively coupled plasma-mass spectrometry (ICP-MS) operated in single-event mode. Journal of Analytical Atomic Spectrometry, 2020, 35, 455-460.	3.0	84
6	A Large-Scale 3D Study on Transport of Humic Acid-Coated Goethite Nanoparticles for Aquifer Remediation. Water (Switzerland), 2020, 12, 1207.	2.7	20
7	Intra-laboratory assessment of a method for the detection of TiO2 nanoparticles present in sunscreens based on multi-detector asymmetrical flow field-flow fractionation. NanoImpact, 2020, 19, 100233.	4.5	6
8	Accurate quantification of TiO2 nanoparticles in commercial sunscreens using standard materials and orthogonal particle sizing methods for verification. Talanta, 2020, 215, 120921.	5.5	21
9	Joint Forces of HR-Spicp-MS and EAF4-MALS for Characterization of Gold Nanorods Conjugated with Synthetic Glycopolymers. Materials Proceedings, 2020, 4, .	0.2	0
10	Effect of field site hydrogeochemical conditions on the corrosion of milled zerovalent iron particles and their dechlorination efficiency. Science of the Total Environment, 2018, 618, 1619-1627.	8.0	20
11	Using Silica Coated Nanoscale Zerovalent Particles for the Reduction of Chlorinated Ethylenes. Silicon, 2018, 10, 2593-2601.	3.3	5
12	Effect of boron on reactivity and apparent corrosion rate of microscale zerovalent irons. Journal of Environmental Chemical Engineering, 2017, 5, 1892-1898.	6.7	5
13	Impact of Sodium Humate Coating on Collector Surfaces on Deposition of Polymer-Coated Nanoiron Particles. Environmental Science & Technology, 2017, 51, 9202-9209.	10.0	14
14	Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Science of the Total Environment, 2016, 563-564, 713-723.	8.0	29
15	Pressure-controlled injection of guar gum stabilized microscale zerovalent iron for groundwater remediation. Journal of Contaminant Hydrology, 2015, 181, 46-58.	3.3	39
16	Use of CAH-degrading bacteria as test-organisms for evaluating the impact of fine zerovalent iron particles on the anaerobic subsurface environment. Chemosphere, 2015, 134, 338-345.	8.2	24
17	Monitoring the Injection of Microscale Zerovalent Iron Particles for Groundwater Remediation by Means of Complex Electrical Conductivity Imaging. Environmental Science & Technology, 2015, 49, 5593-5600.	10.0	62
18	Corrosion rate estimations of microscale zerovalent iron particles via direct hydrogen production measurements. Journal of Hazardous Materials, 2014, 270, 18-26.	12.4	59

#	Article	IF	CITATIONS
19	Guar gum coupled microscale ZVI for in situ treatment of CAHs: Continuous-flow column study. Journal of Hazardous Materials, 2014, 265, 20-29.	12.4	20
20	Field assessment of guar gum stabilized microscale zerovalent iron particles for in-situ remediation of 1,1,1-trichloroethane. Journal of Contaminant Hydrology, 2014, 164, 88-99.	3.3	50
21	Impact of carbon, oxygen and sulfur content of microscale zerovalent iron particles on its reactivity towards chlorinated aliphatic hydrocarbons. Chemosphere, 2013, 93, 2040-2045.	8.2	17
22	Reactivity screening of microscale zerovalent irons and iron sulfides towards different CAHs under standardized experimental conditions. Journal of Hazardous Materials, 2013, 252-253, 204-212.	12.4	46
23	Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. Journal of Contaminant Hydrology, 2012, 142-143, 1-10.	3.3	33
24	Characterisation, Availability, and Risk Assessment of the Metals in Sediment after Aging. Water, Air, and Soil Pollution, 2011, 214, 219-229.	2.4	14