
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3943901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity-Induced Hypertension. Circulation Research, 2015, 116, 991-1006.	2.0	829
2	Obesity-induced Hypertension: Role of Sympathetic Nervous System, Leptin, and Melanocortins. Journal of Biological Chemistry, 2010, 285, 17271-17276.	1.6	399
3	Obesity, kidney dysfunction and hypertension: mechanistic links. Nature Reviews Nephrology, 2019, 15, 367-385.	4.1	336
4	Obesity, hypertension, and chronic kidney disease. International Journal of Nephrology and Renovascular Disease, 2014, 7, 75.	0.8	335
5	Is obesity a major cause of chronic kidney disease?. Advances in Chronic Kidney Disease, 2004, 11, 41-54.	2.2	190
6	Aldosterone Antagonism Attenuates Obesity-Induced Hypertension and Glomerular Hyperfiltration. Hypertension, 2004, 43, 41-47.	1.3	187
7	Hypertension: Physiology and Pathophysiology. , 2012, 2, 2393-2442.		187
8	Obesity-associated hypertension and kidney disease. Current Opinion in Nephrology and Hypertension, 2003, 12, 195-200.	1.0	157
9	Role of Hyperinsulinemia and Insulin Resistance in Hypertension: Metabolic Syndrome Revisited. Canadian Journal of Cardiology, 2020, 36, 671-682.	0.8	153
10	Melanocortin-4 Receptor–Deficient Mice Are Not Hypertensive or Salt-Sensitive Despite Obesity, Hyperinsulinemia, and Hyperleptinemia. Hypertension, 2005, 46, 326-332.	1.3	132
11	The role of the sympathetic nervous system in obesity-related hypertension. Current Hypertension Reports, 2009, 11, 206-211.	1.5	121
12	Melanocortin-4 Receptor Mediates Chronic Cardiovascular and Metabolic Actions of Leptin. Hypertension, 2006, 48, 58-64.	1.3	116
13	Role of Hypothalamic Melanocortin 3/4-Receptors in Mediating Chronic Cardiovascular, Renal, and Metabolic Actions of Leptin. Hypertension, 2004, 43, 1312-1317.	1.3	106
14	Control of Blood Pressure, Appetite, and Glucose by Leptin in Mice Lacking Leptin Receptors in Proopiomelanocortin Neurons. Hypertension, 2011, 57, 918-926.	1.3	106
15	Hypothalamic Melanocortin Receptors and Chronic Regulation of Arterial Pressure and Renal Function. Hypertension, 2003, 41, 768-774.	1.3	104
16	Impact of the obesity epidemic on hypertension and renal disease. Current Hypertension Reports, 2003, 5, 386-392.	1.5	99
17	Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovascular Research, 2021, 117, 1859-1876.	1.8	78
18	Endogenous Melanocortin System Activity Contributes to the Elevated Arterial Pressure in Spontaneously Hypertensive Rats. Hypertension, 2008, 51, 884-890.	1.3	73

#	Article	IF	CITATIONS
19	Role of Adrenergic Activity in Pressor Responses to Chronic Melanocortin Receptor Activation. Hypertension, 2004, 43, 370-375.	1.3	67
20	Role of leptin and central nervous system melanocortins in obesity hypertension. Current Opinion in Nephrology and Hypertension, 2013, 22, 135-140.	1.0	54
21	Synergistic Interaction of Hypertension and Diabetes in Promoting Kidney Injury and the Role of Endoplasmic Reticulum Stress. Hypertension, 2017, 69, 879-891.	1.3	52
22	Renin-angiotensin system function and blood pressure in adult rats after perinatal salt overload. Nutrition, Metabolism and Cardiovascular Diseases, 2003, 13, 133-139.	1.1	50
23	Chronic antidiabetic and cardiovascular actions of leptin: role of CNS and increased adrenergic activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1275-R1282.	0.9	48
24	Leptin into the ventrolateral medulla facilitates chemorespiratory response in leptinâ€deficient (ob/ob) mice. Acta Physiologica, 2014, 211, 240-248.	1.8	48
25	A Functional Melanocortin System May Be Required for Chronic CNS-Mediated Antidiabetic and Cardiovascular Actions of Leptin. Diabetes, 2009, 58, 1749-1756.	0.3	45
26	Impact of obesity on renal structure and function in the presence and absence of hypertension: evidence from melanocortin-4 receptor-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R803-R812.	0.9	42
27	Obesity-Induced Hypertension: Brain Signaling Pathways. Current Hypertension Reports, 2016, 18, 58.	1.5	42
28	Chronic central leptin infusion restores cardiac sympathetic-vagal balance and baroreflex sensitivity in diabetic rats. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1974-H1981.	1.5	38
29	Role of Endothelin-1 in Blood Pressure Regulation in a Rat Model of Visceral Obesity and Hypertension. Hypertension, 2004, 43, 383-387.	1.3	37
30	Central leptin replacement enhances chemorespiratory responses in leptin-deficient mice independent of changes in body weight. Pflugers Archiv European Journal of Physiology, 2012, 464, 145-153.	1.3	36
31	Activation of the central melanocortin system contributes to the increased arterial pressure in obese Zucker rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R561-R567.	0.9	35
32	The Brain Melanocortin System, Sympathetic Control, and Obesity Hypertension. Physiology, 2014, 29, 196-202.	1.6	34
33	Perinatal Salt Restriction: A New Pathway to Programming Insulin Resistance and Dyslipidemia in Adult Wistar Rats. Pediatric Research, 2004, 56, 842-848.	1.1	32
34	Differential control of metabolic and cardiovascular functions by melanocortin-4 receptors in proopiomelanocortin neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R359-R368.	0.9	30
35	Control of metabolic and cardiovascular function by the leptin–brain melanocortin pathway. IUBMB Life, 2013, 65, 692-698.	1.5	29
36	Shp2 signaling in POMC neurons is important for leptin's actions on blood pressure, energy balance, and glucose regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 307, R1438-R1447.	0.9	29

#	Article	IF	CITATIONS
37	Role of Proopiomelanocortin Neuron Stat3 in Regulating Arterial Pressure and Mediating the Chronic Effects of Leptin. Hypertension, 2013, 61, 1066-1074.	1.3	28
38	Control of respiratory and cardiovascular functions by leptin. Life Sciences, 2015, 125, 25-31.	2.0	28
39	Role of the brain melanocortins in blood pressure regulation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2508-2514.	1.8	28
40	Melanocortin-4 Receptors and Sympathetic Nervous System Activation in Hypertension. Current Hypertension Reports, 2019, 21, 46.	1.5	28
41	The rise of the plasma lipid concentration elicited by dietary sodium chloride restriction in Wistar rats is due to an impairment of the plasma triacylglycerol removal rate. Atherosclerosis, 2001, 158, 81-86.	0.4	27
42	Activation of the brain melanocortin system is required for leptinâ€induced modulation of chemorespiratory function. Acta Physiologica, 2015, 213, 893-901.	1.8	27
43	Does Obesity Induce Resistance to the Long-Term Cardiovascular and Metabolic Actions of Melanocortin 3/4 Receptor Activation?. Hypertension, 2006, 47, 259-264.	1.3	25
44	Chronic central ghrelin infusion reduces blood pressure and heart rate despite increasing appetite and promoting weight gain in normotensive and hypertensive rats. Peptides, 2013, 42, 35-42.	1.2	25
45	Regulation of Blood Pressure, Appetite, and Clucose by Leptin After Inactivation of Insulin Receptor Substrate 2 Signaling in the Entire Brain or in Proopiomelanocortin Neurons. Hypertension, 2016, 67, 378-386.	1.3	24
46	Mechanisms of Synergistic Interactions of Diabetes and Hypertension in Chronic Kidney Disease: Role of Mitochondrial Dysfunction and ER Stress. Current Hypertension Reports, 2020, 22, 15.	1.5	24
47	Chronic effects of centrally administered adiponectin on appetite, metabolism and blood pressure regulation in normotensive and hypertensive rats. Peptides, 2012, 37, 1-5.	1.2	23
48	Enhanced blood pressure and appetite responses to chronic central melanocortin-3/4 receptor blockade in dietary-induced obesity. Journal of Hypertension, 2010, 28, 1466-1470.	0.3	22
49	Role of Shp2 in forebrain neurons in regulating metabolic and cardiovascular functions and responses to leptin. International Journal of Obesity, 2014, 38, 775-783.	1.6	22
50	Inhibition of soluble epoxide hydrolase reduces food intake and increases metabolic rate in obese mice. Nutrition, Metabolism and Cardiovascular Diseases, 2012, 22, 598-604.	1.1	21
51	CNS Regulation of Glucose Homeostasis: Role of the Leptin-Melanocortin System. Current Diabetes Reports, 2020, 20, 29.	1.7	21
52	Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet. Journal of Hypertension, 2011, 29, 758-762.	0.3	20
53	Brain-mediated antidiabetic, anorexic, and cardiovascular actions of leptin require melanocortin-4 receptor signaling. Journal of Neurophysiology, 2015, 113, 2786-2791.	0.9	19
54	Cardiovascular, Renal, and Metabolic Responses to Chronic Central Administration of Agouti-Related Peptide. Hypertension, 2004, 44, 853-858.	1.3	16

#	Article	IF	CITATIONS
55	Chronic central nervous system hyperinsulinemia and regulation of arterial pressure and food intake. Journal of Hypertension, 2006, 24, 1391-1395.	0.3	16
56	Systemic But Not Central Nervous System Nitric Oxide Synthase Inhibition Exacerbates the Hypertensive Effects of Chronic Melanocortin-3/4 Receptor Activation. Hypertension, 2011, 57, 428-434.	1.3	16
57	Inhibitor κB Kinase 2 Is a Myosin Light Chain Kinase in Vascular Smooth Muscle. Circulation Research, 2013, 113, 562-570.	2.0	16
58	Chronic Central Nervous System MC3/4R Blockade Attenuates Hypertension Induced by Nitric Oxide Synthase Inhibition but Not by Angiotensin II Infusion. Hypertension, 2015, 65, 171-177.	1.3	16
59	Role of autonomic nervous system in chronic CNS-mediated antidiabetic action of leptin. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E420-E428.	1.8	15
60	Leptin reverses hyperglycemia and hyperphagia in insulin deficient diabetic rats by pituitary-independent central nervous system actions. PLoS ONE, 2017, 12, e0184805.	1.1	15
61	Impact of leptin deficiency compared with neuronal-specific leptin receptor deletion on cardiometabolic regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 317, R552-R562.	0.9	14
62	Dimethyl fumarate preserves left ventricular infarct integrity following myocardial infarction via modulation of cardiac macrophage and fibroblast oxidative metabolism. Journal of Molecular and Cellular Cardiology, 2021, 158, 38-48.	0.9	14
63	Pathophysiology of Obesity—Induced Hypertension and Target Organ Damage. , 2007, , 447-468.		13
64	Role of SOCS3 in POMC neurons in metabolic and cardiovascular regulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R338-R351.	0.9	11
65	Restoration of Cardiac Function After Myocardial Infarction by Long-Term Activation of the CNS Leptin-Melanocortin System. JACC Basic To Translational Science, 2021, 6, 55-70.	1.9	11
66	Maternal high-sodium intake alters the responsiveness of the renin–angiotensin system in adult offspring. Life Sciences, 2012, 90, 785-792.	2.0	10
67	Interaction of Obesity and Hypertension on Cardiac Metabolic Remodeling and Survival Following Myocardial Infarction. Journal of the American Heart Association, 2021, 10, e018212.	1.6	10
68	Neuronal Suppressor of Cytokine Signaling 3. Hypertension, 2018, 71, 1248-1257.	1.3	9
69	Role of melanocortin 4 receptor in hypertension induced by chronic intermittent hypoxia. Acta Physiologica, 2019, 225, e13222.	1.8	8
70	Sex differences in the impact of parental obesity on offspring cardiac SIRT3 expression, mitochondrial efficiency, and diastolic function early in life. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H485-H495.	1.5	8
71	Transient receptor potential cation channel 6 contributes to kidney injury induced by diabetes and hypertension. American Journal of Physiology - Renal Physiology, 2022, 322, F76-F88.	1.3	8
72	Control of appetite, blood glucose, and blood pressure during melanocortin-4 receptor activation in normoglycemic and diabetic NPY-deficient mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 314, R533-R539.	0.9	6

ALEXANDRE A DA SILVA

#	Article	IF	CITATIONS
73	In search for potential antidiabetic compounds from natural sources: docking, synthesis and biological screening of small molecules from Lycium spp. (Goji). Heliyon, 2020, 6, e02782.	1.4	6
74	Changes in ambient temperature elicit divergent control of metabolic and cardiovascular actions by leptin. FASEB Journal, 2017, 31, 2418-2428.	0.2	5
75	Role of hindbrain melanocortin-4 receptor activity in controlling cardiovascular and metabolic functions in spontaneously hypertensive rats. Journal of Hypertension, 2015, 33, 1201-1206.	0.3	4
76	Increased sleep time and reduced energy expenditure contribute to obesity after ovariectomy and a high fat diet. Life Sciences, 2018, 212, 119-128.	2.0	4
77	Chronic CNS-mediated cardiometabolic actions of leptin: potential role of sex differences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R173-R181.	0.9	4
78	Parental obesity alters offspring blood pressure regulation and cardiovascular responses to stress: role of P2X7R and sex differences. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R421-R433.	0.9	3
79	Regulation of Blood Pressure, Appetite, and Glucose by CNS Melanocortin System in Hyperandrogenemic Female SHR. American Journal of Hypertension, 2016, 29, 832-840.	1.0	2
80	Chronic Antidiabetic Actions of Leptin: Evidence From Parabiosis Studies for a CNS-Derived Circulating Antidiabetic Factor. Diabetes, 2021, 70, 2264-2274.	0.3	2
81	Effects of leptin in the retrotrapezoid nucleus (RTN) on CO2â€sensitivity and respiration FASEB Journal, 2013, 27, 1137.12.	0.2	2
82	Abstract 27: Leptin Reduces Food Intake but Fails to Raise Blood Pressure In Mice With Deficiency of Insulin Receptor Substrate (IRS2) In the Entire Brain or Specifically in Pomc Neurons. Hypertension, 2012, 60, .	1.3	2
83	Ganglionic blockade does not impair the chronic CNSâ€mediated antidiabetic action of leptin in streptozotocinâ€induced diabetic rats. FASEB Journal, 2012, 26, 1128.3.	0.2	1
84	TRPC6 deficiency causes obesity and metabolic dysfunction. FASEB Journal, 2019, 33, 753.1.	0.2	1
85	Impact of Mineralocorticoid Receptor and Angiotensin II Type 1 Receptor Antagonism on Blood Pressure Regulation in Obese Zucker Rats: Role of Sex Differences. American Journal of Hypertension, 2021, 34, 999-1005.	1.0	1
86	Transient receptor potential cation channel 6 deficiency leads to increased body weight and metabolic dysfunction. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 323, R81-R97.	0.9	1
87	Chronic Central Nervous System Leptin Infusion Improves Cardiac Function and Metabolism after Ischemia/Reperfusion Injury. FASEB Journal, 2022, 36, .	0.2	1
88	Response to Thyrotropin-Releasing Hormone Precursor Gene Knocking Down Impedes Melanocortin-Induced Hypertension in Rats. Hypertension, 2008, 52, .	1.3	0
89	Obesity and Hypertension: Impact on Cardiovascular and Renal Systems. , 2005, , 464-474.		0
90	Impact of Obesity on Renal Structure and Function in The Absence of Hypertension: Evidence From Melanocortinâ€4 Receptor (MC4R) Deficient Mice. FASEB Journal, 2006, 20, .	0.2	0

ALEXANDRE A DA SILVA

#	Article	IF	CITATIONS
91	Chronic MC3/4R activation does not mimic the actions of leptin on baroreceptor sensitivity and heart rate regulation in diabetic rats. FASEB Journal, 2008, 22, 947.5.	0.2	Ο
92	Cardiovascular function and metabolism in old melanocortinâ€4 receptor deficient obese mice FASEB Journal, 2008, 22, 947.2.	0.2	0
93	Cardiovascular and metabolic responses to chronic central MC3/4R antagonism in rats fed a high fat diet. FASEB Journal, 2008, 22, 947.4.	0.2	0
94	Cardiovascular and metabolic regulation in mice with Shp2 deletion in forebrain neurons. FASEB Journal, 2009, 23, 785.5.	0.2	0
95	Central NPY deficiency does not enhance the chronic actions of melanocortin 3 and 4 receptors (MC3/4R) activation on glucose homeostasis, appetite and cardiovascular function in diabetic mice. FASEB Journal, 2010, 24, 597.6.	0.2	0
96	Cardiovascular and metabolic responses to thermoneutrality and cold ambient temperature in lean and obese leptin deficient mice. FASEB Journal, 2011, 25, .	0.2	0
97	Metabolic and appetite responses to fasting and refeeding in mice with Shp2 deletion in forebrain neurons. FASEB Journal, 2012, 26, 877.2.	0.2	0
98	AT1 receptor antagonism but not mineralocorticoid receptor blockade lowers blood pressure in obese Zucker rats. FASEB Journal, 2012, 26, 1093.6.	0.2	0
99	Shp2 signaling in Pomc neurons is important for leptin's actions on blood pressure, energy balance and glucose homeostasis FASEB Journal, 2013, 27, 1120.3.	0.2	0
100	Cardiovascular and metabolic regulation in mice with neuron specific deletion of the leptin receptor FASEB Journal, 2013, 27, 1153.6.	0.2	0
101	Hypophysectomy attenuates leptinâ€induced tachycardia without affecting leptin's action on appetite and body weight FASEB Journal, 2013, 27, 1123.12.	0.2	0
102	Effects of Hyperandrogenemia on Cardiovascular and Metabolic Responses to Chronic Melanocortinâ€4 Receptor Blockade in Female SHR. FASEB Journal, 2015, 29, 647.2.	0.2	0
103	Interaction of Hypertension and Diabetes in Progressive Nephropathy: Role of ER Stress. FASEB Journal, 2015, 29, 959.9.	0.2	0
104	Evidence for a circulating factor released by the brain that contributes to chronic antidiabetic actions of leptin. FASEB Journal, 2018, 32, 603.3.	0.2	0
105	Role of Melanocortinâ€4 Receptor Activation in Hypertension Induced by Chronic Intermittent Hypoxia. FASEB Journal, 2018, 32, 727.6.	0.2	0
106	Metabolic and cardiovascular responses to chronic intermittent hypoxia and hypercapnia. FASEB Journal, 2019, 33, 533.4.	0.2	0
107	Chronic Intracerebroventricular Leptin Infusion Attenuates Cardiac Dysfunction After Myocardial Infarction. FASEB Journal, 2019, 33, 830.6.	0.2	0
108	Impact of maternal obesity on body weight regulation and sleep time in offspring. FASEB Journal, 2019, 33, 753.4.	0.2	0

7

#	ARTICLE	IF	CITATIONS
109	Differential Regulation of Cardiac Substrate Utilization in Response to Chronic Central Nervous System Administration of Leptin and Melanotan II in Rats with Myocardial Infarction. FASEB Journal, 2019, 33, 532.10.	0.2	0
110	TRPC6 deficiency causes increased body weight and glucose intolerance in mice fed a normal diet but does not amplify the obesogenic effect of a high fat diet. FASEB Journal, 2020, 34, 1-1.	0.2	0
111	Editorial: The Impact of Adipose Tissue Dysfunction on Cardiovascular and Renal Disease. Frontiers in Endocrinology, 2021, 12, 815894.	1.5	Ο
112	Highâ€Frequency 4D Ultrasound Evaluation of Temporal Changes in Endocardial Surface Strain after Myocardial Infarction. FASEB Journal, 2022, 36, .	0.2	0
113	Metabolic Reprogramming Mediates Macrophage Polarization After Myocardial Infarction. FASEB Journal, 2022, 36, .	0.2	Ο
114	Parental Obesity Alters Offspring Blood Pressure Regulation and Cardiovascular Responses to Stress: Role of P2X7R and Sex Differences. FASEB Journal, 2022, 36, .	0.2	0