Michelle T Foster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3943380/publications.pdf

Version: 2024-02-01

331642 377849 34 1,452 21 34 citations h-index g-index papers 35 35 35 2686 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Adipose tissue, obesity and adipokines: role in cancer promotion. Hormone Molecular Biology and Clinical Investigation, 2015, 21, 57-74.	0.7	201
2	Adipose tissue: an endocrine organ playing a role in metabolic regulation. Hormone Molecular Biology and Clinical Investigation, 2016, 26, 25-42.	0.7	132
3	Sympathetic but not sensory denervation stimulates white adipocyte proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 291, R1630-R1637.	1.8	103
4	Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R1284-R1293.	1.8	95
5	Detrimental and protective fat: body fat distribution and its relation to metabolic disease. Hormone Molecular Biology and Clinical Investigation, 2014, 17, 13-27.	0.7	73
6	Metabolic alterations following visceral fat removal and expansion. Adipocyte, 2012, 1, 192-199.	2.8	72
7	Beiging of white adipose tissue as a therapeutic strategy for weight loss in humans. Hormone Molecular Biology and Clinical Investigation, 2017, 31, .	0.7	70
8	Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports, 2013, 1, .	1.7	66
9	Ovariectomy results in differential shifts in gut microbiota in low versus high aerobic capacity rats. Physiological Reports, 2015, 3, e12488.	1.7	64
10	Fuzhuan tea consumption imparts hepatoprotective effects and alters intestinal microbiota in high saturated fat dietâ€fed rats. Molecular Nutrition and Food Research, 2016, 60, 1213-1220.	3.3	59
11	Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: Role of hepatic triglyceride storage. Physiology and Behavior, 2011, 104, 845-854.	2.1	49
12	Obesity associated disease risk: the role of inherent differences and location of adipose depots. Hormone Molecular Biology and Clinical Investigation, 2018, 33, .	0.7	48
13	Subcutaneous inguinal white adipose tissue is responsive to, but dispensable for, the metabolic health benefits of exercise. American Journal of Physiology - Endocrinology and Metabolism, 2018, 314, E66-E77.	3.5	43
14	Microgreens: Consumer sensory perception and acceptance of an emerging functional food crop. Journal of Food Science, 2020, 85, 926-935.	3.1	34
15	Transplantation or removal of intra-abdominal adipose tissue prevents age-induced glucose insensitivity. Physiology and Behavior, 2010, 101, 282-288.	2.1	33
16	Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte, 2018, 7, 261-272.	2.8	30
17	White Kidney Bean (Phaseolus Vulgaris L.) Consumption Reduces Fat Accumulation in a Polygenic Mouse Model of Obesity. Nutrients, 2019, 11, 2780.	4.1	29
18	The role of visceral and subcutaneous adipose tissue fatty acid composition in liver pathophysiology associated with NAFLD. Adipocyte, 2015, 4, 101-112.	2.8	28

#	Article	IF	CITATIONS
19	Lipedema and the Potential Role of Estrogen in Excessive Adipose Tissue Accumulation. International Journal of Molecular Sciences, 2021, 22, 11720.	4.1	28
20	Pathophysiology of obesity on knee joint homeostasis: contributions of the infrapatellar fat pad. Hormone Molecular Biology and Clinical Investigation, 2016, 26, 97-108.	0.7	24
21	Comprehensive Evaluation of Metabolites and Minerals in 6 Microgreen Species and the Influence of Maturity. Current Developments in Nutrition, 2021, 5, nzaa180.	0.3	23
22	Dietâ€induced obesity causes visceral, but not subcutaneous, lymph node hyperplasia <i>via</i> increases in specific immune cell populations. Cell Proliferation, 2017, 50, .	5. 3	21
23	Examining the Gastrointestinal and Immunomodulatory Effects of the Novel Probiotic Bacillus subtilis DE111. International Journal of Molecular Sciences, 2021, 22, 2453.	4.1	21
24	Lower body adipose tissue removal decreases glucose tolerance and insulin sensitivity in mice with exposure to high fat diet. Adipocyte, 2015, 4, 32-43.	2.8	16
25	Adipose tissue extrinsic factor: Obesity-induced inflammation and the role of the visceral lymph node. Physiology and Behavior, 2018, 190, 71-81.	2.1	16
26	High-fat diet induced central adiposity (visceral fat) is associated with increased fibrosis and decreased immune cellularity of the mesenteric lymph node in mice. European Journal of Nutrition, 2020, 59, 1641-1654.	3.9	15
27	Fuzhuan tea reverses arterial stiffening after modest weight gain in mice. Nutrition, 2017, 33, 266-270.	2.4	14
28	Obesity-induced immune dysfunction and immunosuppression: TEM observation of visceral and subcutaneous lymph node microarchitecture and immune cell interactions. Hormone Molecular Biology and Clinical Investigation, 2019, 39, .	0.7	13
29	Relandscaping the Gut Microbiota with a Whole Food: Dose–Response Effects to Common Bean. Foods, 2022, 11, 1153.	4.3	9
30	Understanding Recession and Self-Rated Health with the Partial Proportional Odds Model: An Analysis of 26 Countries. PLoS ONE, 2015, 10, e0140724.	2.5	7
31	Glucocorticoids regulate adipose tissue protein concentration in a depot- and sex-specific manner. Stress, 2020, 23, 243-247.	1.8	5
32	Summary of the 2018 Alcohol and Immunology Research Interest Group (AIRIG) meeting. Alcohol, 2019, 77, 11-18.	1.7	4
33	So as we worry we weigh: Visible burrow system stress and visceral adiposity. Physiology and Behavior, 2017, 178, 151-156.	2.1	4
34	Capillary Western Immunoassay Optimization of Estrogen Related Factors in Human Subcutaneous Adipose Tissue. Methods and Protocols, 2022, 5, 34.	2.0	3