Paul Anthony Stevenson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3943300/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Octopamine and Experience-Dependent Modulation of Aggression in Crickets. Journal of Neuroscience, 2005, 25, 1431-1441.	3.6	215
2	The fight and flight responses of crickets depleted of biogenic amines. Journal of Neurobiology, 2000, 43, 107-120.	3.6	187
3	Localization of octopaminergic neurones in insects. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 110, 203-215.	0.6	119
4	A reconsideration of the central pattern generator concept for locust flight. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1987, 161, 115-129.	1.6	111
5	Flight restores fight in crickets. Nature, 2000, 403, 613-613.	27.8	103
6	Demonstration of functional connectivity of the flight motor system in all stages of the locust. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 162, 247-259.	1.6	77
7	Assessment strategy of fighting crickets revealed by manipulating information exchange. Animal Behaviour, 2007, 74, 823-836.	1.9	67
8	Octopamine and occupancy: an aminergic mechanism for intruder–resident aggression in crickets. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1873-1880.	2.6	63
9	Winning Fights Induces Hyperaggression via the Action of the Biogenic Amine Octopamine in Crickets. PLoS ONE, 2011, 6, e28891.	2.5	59
10	The Decision to Fight or Flee – Insights into Underlying Mechanism in Crickets. Frontiers in Neuroscience, 2012, 6, 118.	2.8	52
11	Isolation Associated Aggression – A Consequence of Recovery from Defeat in a Territorial Animal. PLoS ONE, 2013, 8, e74965.	2.5	46
12	Mechanisms of experience dependent control of aggression in crickets. Current Opinion in Neurobiology, 2013, 23, 318-323.	4.2	41
13	Octopamine-like immunoreactive neurones in locust genital abdominal ganglia. Cell and Tissue Research, 1994, 275, 299-308.	2.9	40
14	A new method for double immunolabelling with primary antibodies from identical species. Journal of Immunological Methods, 1996, 190, 255-265.	1.4	40
15	A muscarinic cholinergic mechanism underlies activation of the central pattern generator for locust flight. Journal of Experimental Biology, 2008, 211, 2346-2357.	1.7	40
16	Colocalization of octopamine and FMRFamide related peptide in identified heart projecting (DUM) neurones in the locust revealed by immunocytochemistry. Brain Research, 1994, 638, 117-125.	2.2	39
17	Flight and Walking in Locusts–Cholinergic Co-Activation, Temporal Coupling and Its Modulation by Biogenic Amines. PLoS ONE, 2013, 8, e62899.	2.5	39
18	A fighter's comeback: Dopamine is necessary for recovery of aggression after social defeat in crickets. Hormones and Behavior, 2014, 66, 696-704.	2.1	39

#	Article	IF	CITATIONS
19	Releasing stimuli and aggression in crickets: octopamine promotes escalation and maintenance but not initiation. Frontiers in Behavioral Neuroscience, 2015, 9, 95.	2.0	36
20	Neuronal organization of a fastâ€mediating cephalothoracic pathway for antennalâ€ŧactile information in the cricket (<i>Gryllus bimaculatus</i> DeGeer). Journal of Comparative Neurology, 2011, 519, 1677-1690.	1.6	35
21	Evolution of pigmentâ€dispersing factor neuropeptides in panarthropoda: Insights from onychophora (velvet worms) and tardigrada (water bears). Journal of Comparative Neurology, 2015, 523, 1865-1885.	1.6	32
22	Female crickets are driven to fight by the male courting and calling songs. Animal Behaviour, 2009, 77, 737-742.	1.9	31
23	Serotonin Mediates Depression of Aggression After Acute and Chronic Social Defeat Stress in a Model Insect. Frontiers in Behavioral Neuroscience, 2018, 12, 233.	2.0	31
24	The nervous and visual systems of onychophorans and tardigrades: learning about arthropod evolution from their closest relatives. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 565-590.	1.6	29
25	Controlling the decision to fight or flee: the roles of biogenic amines and nitric oxide in the cricket. Environmental Epigenetics, 2016, 62, 265-275.	1.8	28
26	Colocalisation of taurine- with transmitter-immunoreactivities in the nervous system of the migratory locust. , 1999, 404, 86-96.		27
27	Adding up the odds—Nitric oxide signaling underlies the decision to flee and post-conflict depression of aggression. Science Advances, 2015, 1, e1500060.	10.3	26
28	Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. Journal of Experimental Biology, 2015, 218, 915-922.	1.7	25
29	Amine and amino acid transmitters in the eye of the molluscBulla gouldiana: An immunocytochemical study. Journal of Comparative Neurology, 2000, 425, 244-256.	1.6	24
30	Nitric oxide: a co-modulator of efferent peptidergic neurosecretory cells including a unique octopaminergic neurone innervating locust heart. Cell and Tissue Research, 2006, 325, 345-360.	2.9	23
31	Assessing segmental versus non-segmental features in the ventral nervous system of onychophorans (velvet worms). BMC Evolutionary Biology, 2017, 17, 3.	3.2	18
32	Born to win or bred to lose: aggressive and submissive behavioural profiles in crickets. Animal Behaviour, 2017, 123, 441-450.	1.9	18
33	Differential modulation of courtship behavior and subsequent aggression by octopamine, dopamine and serotonin in male crickets. Hormones and Behavior, 2019, 114, 104542.	2.1	17
34	Fight or flee? Lessons from insects on aggression. Neuroforum, 2019, 25, 3-13.	0.3	17
35	Chronic social defeat induces long-term behavioral depression of aggressive motivation in an invertebrate model system. PLoS ONE, 2017, 12, e0184121.	2.5	14
36	Losing without Fighting - Simple Aversive Stimulation Induces Submissiveness Typical for Social Defeat via the Action of Nitric Oxide, but Only When Preceded by an Aggression Priming Stimulus. Frontiers in Behavioral Neuroscience, 2017, 11, 50.	2.0	11

#	Article	IF	CITATIONS
37	Agonistic experience during development establishes inter-individual differences in approach-avoidance behaviour of crickets. Scientific Reports, 2021, 11, 16702.	3.3	7
38	Immunohistochemical investigations of Myzostoma cirriferum and Mesomyzostoma cf. katoi (Myzostomida, Annelida) with implications for the evolution of the myzostomid body plan. Zoomorphology, 2014, 133, 257-271.	0.8	6
39	Neuromodulators and the Control of Aggression in Crickets. , 2017, , 169-195.		5
40	Pre-adult aggression and its long-term behavioural consequences in crickets. PLoS ONE, 2020, 15, e0230743.	2.5	5
41	Neuromodulation of Social Behavior in Insects. , 2014, , .		3
42	The velvet worm brain unveils homologies and evolutionary novelties across panarthropods. BMC Biology, 2022, 20, 26.	3.8	3
43	Evolution of pigment-dispersing factor neuropeptides in panarthropoda: Insights from onychophora (velvet worms) and tardigrada (water bears). Journal of Comparative Neurology, 2015, 523, Spc1-Spc1.	1.6	1
44	The fight and flight responses of crickets depleted of biogenic amines. Journal of Neurobiology, 2000, 43, 107.	3.6	1
45	Individual Scores for Associative Learning in a Differential Appetitive Olfactory Paradigm Using Binary Logistic Regression Analysis. Frontiers in Behavioral Neuroscience, 2021, 15, 741439.	2.0	0
46	Pre-adult aggression and its long-term behavioural consequences in crickets. , 2020, 15, e0230743.		0
47	Pre-adult aggression and its long-term behavioural consequences in crickets. , 2020, 15, e0230743.		0
48	Pre-adult aggression and its long-term behavioural consequences in crickets. , 2020, 15, e0230743.		0
49	Pre-adult aggression and its long-term behavioural consequences in crickets. , 2020, 15, e0230743.		0