
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3943057/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Retrieval of photon blockade effect in the dispersive Jaynes-Cummings model. Physical Review A, 2022, 105, .                               | 1.0 | 10        |
| 2  | All-optical quantum simulation of ultrastrong optomechanics. Physical Review A, 2022, 105, .                                               | 1.0 | 3         |
| 3  | Accelerated ground-state cooling of an optomechanical resonator via shortcuts to adiabaticity.<br>Physical Review A, 2022, 105, .          | 1.0 | 4         |
| 4  | Dynamical emission of phonon pairs in optomechanical systems. Physical Review A, 2022, 105, .                                              | 1.0 | 6         |
| 5  | Exceptional Photon Blockade: Engineering Photon Blockade with Chiral Exceptional Points. Laser and Photonics Reviews, 2022, 16, .          | 4.4 | 28        |
| 6  | Domino cooling of a coupled mechanical-resonator chain via cold-damping feedback. Physical Review A, 2021, 103, .                          | 1.0 | 26        |
| 7  | Quantum simulation of tunable and ultrastrong mixed-optomechanics. Optics Express, 2021, 29, 28202.                                        | 1.7 | 1         |
| 8  | Optical normal-mode-induced phonon-sideband splitting in the photon-blockade effect. Physical<br>Review A, 2021, 104, .                    | 1.0 | 7         |
| 9  | Nonequilibrium thermal transport and photon squeezing in a quadratic qubit-resonator system.<br>Physical Review A, 2021, 104, .            | 1.0 | 6         |
| 10 | Quantum simulation of a three-mode optomechanical system based on the Fredkin-type interaction.<br>Physical Review A, 2021, 104, .         | 1.0 | 2         |
| 11 | Nonreciprocal ground-state cooling of multiple mechanical resonators. Physical Review A, 2020, 102, .                                      | 1.0 | 82        |
| 12 | Quantum entanglement maintained by virtual excitations in an ultrastrongly-coupled-oscillator system. Scientific Reports, 2020, 10, 12557. | 1.6 | 13        |
| 13 | Tunable optomechanically induced transparency by controlling the dark-mode effect. Physical Review<br>A, 2020, 102, .                      | 1.0 | 55        |
| 14 | Multiphoton blockade in the two-photon Jaynes-Cummings model. Physical Review A, 2020, 102, .                                              | 1.0 | 37        |
| 15 | Generalized ultrastrong optomechanical-like coupling. Physical Review A, 2020, 101, .                                                      | 1.0 | 25        |
| 16 | Quantum Thermalization and Vanishing Thermal Entanglement in the Open Jaynes–Cummings Model.<br>Annalen Der Physik, 2020, 532, 2000134.    | 0.9 | 4         |
| 17 | Enhancement of photon blockade effect via quantum interference. Optics Express, 2020, 28, 16175.                                           | 1.7 | 34        |
| 18 | Spectrometric detection of weak forces in cavity optomechanics. Optics Express, 2020, 28, 28620.                                           | 1.7 | 7         |

| #  | Article                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Supersensitive estimation of the coupling rate in cavity optomechanics with an impurity-doped<br>Bose-Einstein condensate. Optics Express, 2020, 28, 22867.             | 1.7 | 2         |
| 20 | Spectral Characterization of Couplings in a Mixed Optomechanical Model. Communications in Theoretical Physics, 2019, 71, 939.                                           | 1.1 | 2         |
| 21 | Generation of single entangled photon-phonon pairs via an atom-photon-phonon interaction. Physical<br>Review A, 2019, 100, .                                            | 1.0 | 8         |
| 22 | Enhancement of few-photon optomechanical effects with cross-Kerr nonlinearity. Physical Review A, 2019, 99, .                                                           | 1.0 | 35        |
| 23 | Nonreciprocal Photon Blockade. Physical Review Letters, 2018, 121, 153601.                                                                                              | 2.9 | 270       |
| 24 | Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Physical Review A, 2018, 98, .                                                           | 1.0 | 71        |
| 25 | Manipulating counter-rotating interactions in the quantum Rabi model via modulation of the transition frequency of the two-level system. Physical Review A, 2017, 96, . | 1.0 | 23        |
| 26 | Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Physical Review A,<br>2016, 93, .                                                         | 1.0 | 48        |
| 27 | Macroscopic Quantum Superposition in Cavity Optomechanics. Physical Review Letters, 2016, 116, 163602.                                                                  | 2.9 | 139       |
| 28 | Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity. Physical<br>Review A, 2015, 91, .                                               | 1.0 | 165       |
| 29 | Enhancement of mechanical effects of single photons in modulated two-mode optomechanics.<br>Physical Review A, 2015, 92, .                                              | 1.0 | 51        |
| 30 | Quantum coherence in ultrastrong optomechanics. Physical Review A, 2015, 91, .                                                                                          | 1.0 | 52        |
| 31 | Modulated electromechanics: large enhancements of nonlinearities. New Journal of Physics, 2014, 16, 072001.                                                             | 1.2 | 31        |
| 32 | Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system. Physical<br>Review A, 2014, 89, .                                                  | 1.0 | 137       |
| 33 | Spectrometric reconstruction of mechanical-motional states in optomechanics. Physical Review A, 2014, 90, .                                                             | 1.0 | 16        |
| 34 | Enhanced interferometry using squeezed thermal states and even or odd states. Physical Review A, 2014, 89, .                                                            | 1.0 | 49        |
| 35 | Single-photon quadratic optomechanics. Scientific Reports, 2014, 4, 6302.                                                                                               | 1.6 | 65        |
| 36 | Photon blockade in quadratically coupled optomechanical systems. Physical Review A, 2013, 88, .                                                                         | 1.0 | 242       |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Photon blockade induced by atoms with Rydberg coupling. Physical Review A, 2013, 87, .                                                                                                     | 1.0 | 57        |
| 38 | Correlated two-photon scattering in cavity optomechanics. Physical Review A, 2013, 87, .                                                                                                   | 1.0 | 109       |
| 39 | Spectrum of single-photon emission and scattering in cavity optomechanics. Physical Review A, 2012, 85, .                                                                                  | 1.0 | 106       |
| 40 | Cooling of a mirror in cavity optomechanics with a chirped pulse. Physical Review A, 2011, 84, .                                                                                           | 1.0 | 53        |
| 41 | Quantum thermalization of two coupled two-level systems in eigenstate and bare-state representations. Physical Review A, 2011, 83, .                                                       | 1.0 | 29        |
| 42 | Parametric generation of quadrature squeezing of mirrors in cavity optomechanics. Physical Review<br>A, 2011, 83, .                                                                        | 1.0 | 124       |
| 43 | Controllable cross-Kerr interaction between microwave photons in circuit quantum electrodynamics. Chinese Physics B, 2011, 20, 034203.                                                     | 0.7 | 1         |
| 44 | Quantum Anti-Zeno Effect in Artificial Quantum Systems. Communications in Theoretical Physics, 2010, 54, 985-996.                                                                          | 1.1 | 4         |
| 45 | Quantum thermal discord in a two-spin-1/2 XXZ model. Chinese Physics B, 2010, 19, 100311.                                                                                                  | 0.7 | 23        |
| 46 | Correlated two-photon transport in a one-dimensional waveguide side-coupled to a nonlinear cavity.<br>Physical Review A, 2010, 82, .                                                       | 1.0 | 137       |
| 47 | Coherent excitation-energy transfer and quantum entanglement in a dimer. Physical Review A, 2010, 82,                                                                                      | 1.0 | 41        |
| 48 | Single-particle machine for quantum thermalization. Physical Review A, 2010, 81, .                                                                                                         | 1.0 | 42        |
| 49 | Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Physical Review A, 2010, 81, .                          | 1.0 | 123       |
| 50 | Amplification of quantum discord between two uncoupled qubits in a common environment by phase decoherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2010, 43, 165503. | 0.6 | 45        |
| 51 | Quantum switch for single-photon transport in a coupled superconducting<br>transmission-line-resonator array. Physical Review A, 2009, 80, .                                               | 1.0 | 84        |
| 52 | Dynamic sensitivity of photon-dressed atomic ensemble with quantum criticality. Physical Review A, 2009, 80, .                                                                             | 1.0 | 24        |
| 53 | Nanomechanical resonator coupling with a double quantum dot: quantum state engineering.<br>European Physical Journal B, 2008, 63, 79-83.                                                   | 0.6 | 9         |
| 54 | Near-complete teleportation of two-mode four-component entangled coherent states. Journal of<br>Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1183-1194.                     | 0.6 | 21        |

| #  | Article                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Generation of entangled coherent states of two cavity fields via coupling to a SQUID-based charge qubit. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 1845-1852.   | 0.6 | 17        |
| 56 | A new optical scheme for quantum teleportation of superposed coherent states. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2006, 358, 115-120.                    | 0.9 | 25        |
| 57 | Preparation of hybrid entangled states and entangled coherent states for a single trapped ion in a cavity. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 4709-4718. | 0.6 | 12        |