Inga Põldsalu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942886/publications.pdf

Version: 2024-02-01

840585 610775 33 594 11 24 citations h-index g-index papers 36 36 36 600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Preâ€Noachian Mars**. ChemSystemsChem, 2022, 4, .	1.1	3
2	Spontaneous formation of prebiotic compartment colonies on Hadean Earth and Pre-Noachian Mars. Biophysical Journal, 2022, 121, 68a.	0.2	1
3	Protocells: Milestones and Recent Advances. Small, 2022, 18, e2106624.	5.2	45
4	Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Preâ€Noachian Mars. ChemSystemsChem, 2022, 4, .	1.1	0
5	Protocells: Milestones and Recent Advances (Small 18/2022). Small, 2022, 18, .	5 . 2	О
6	Surface-Assisted Formation of Model Protocells from Fatty Acid and Phospholipid Mixtures. Biophysical Journal, 2021, 120, 223a.	0.2	0
7	Mixed fatty acid-phospholipid protocell networks. Physical Chemistry Chemical Physics, 2021, 23, 26948-26954.	1.3	3
8	Fabrication of Carbon-Based Ionic Electromechanically Active Soft Actuators. Journal of Visualized Experiments, 2020, , .	0.2	3
9	Printed PEDOT:PSS Trilayer: Mechanism Evaluation and Application in Energy Storage. Materials, 2020, 13, 491.	1.3	4
10	Surface-Assisted Self-Assembly of Fatty Acids to Cell-Like Compartments. Biophysical Journal, 2020, 118, 82a.	0.2	2
11	Microfluidic technology for investigation of protein function in single adherent cells. Methods in Enzymology, 2019, 628, 145-172.	0.4	1
12	Encapsulation of ionic electromechanically active polymer actuators. Smart Materials and Structures, 2019, 28, 074002.	1.8	10
13	Thin ink-jet printed trilayer actuators composed of PEDOT:PSS on interpenetrating polymer networks. Sensors and Actuators B: Chemical, 2018, 258, 1072-1079.	4.0	40
14	Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes. Synthetic Metals, 2018, 246, 122-127.	2.1	8
15	Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions. Actuators, 2018, 7, 7.	1.2	9
16	Scalable fabrication of ionic and capacitive laminate actuators for soft robotics. Sensors and Actuators B: Chemical, 2017, 246, 154-163.	4.0	35
17	Inkjetâ€printed hybrid conducting polymer-activated carbon aerogel linear actuators driven in an organic electrolyte. Sensors and Actuators B: Chemical, 2017, 250, 44-51.	4.0	21
18	Fabrication of ion-conducting carbon-polymer composite electrodes by spin-coating., 2015,,.		1

#	Article	IF	CITATIONS
19	Micro-mechanics of ionic electroactive polymer actuators. Proceedings of SPIE, 2015, , .	0.8	2
20	lonic and Capacitive Artificial Muscle for Biomimetic Soft Robotics. Advanced Engineering Materials, 2015, 17, 84-94.	1.6	141
21	Long-term degradation of the ionic electroactive polymer actuators. Proceedings of SPIE, 2015, , .	0.8	2
22	Lifetime measurements of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2014, 25, 2267-2275.	1.4	12
23	Pulse-width-modulated charging of ionic and capacitive actuators. , 2014, , .		3
24	lonic liquid-based actuators working in air: The effect of ambient humidity. Sensors and Actuators B: Chemical, 2014, 202, 114-122.	4.0	63
25	Ionic electroactive polymer artificial muscles in space applications. Scientific Reports, 2014, 4, 6913.	1.6	64
26	Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks. Lab on A Chip, 2013, 13, 3822.	3.1	12
27	Repair of large area pores in supported double bilayers. Soft Matter, 2013, 9, 2787.	1.2	11
28	Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. Physical Chemistry Chemical Physics, 2013, 15, 9605.	1.3	50
29	Mechanoelectrical impedance of a carbide-derived carbon-based laminate motion sensor at large bending deflections. Smart Materials and Structures, 2013, 22, 104015.	1.8	8
30	An ionic liquid-based actuator as a humidity sensor. , 2013, , .		1
31	Ionic EAP transducers with amorphous nanoporous carbon electrodes. Proceedings of SPIE, 2012, , .	0.8	0
32	Carbon-polymer-ionic liquid composite as a motion sensor. Proceedings of SPIE, 2012, , .	0.8	1
33	A carbide-derived carbon laminate used as a mechanoelectrical sensor. Carbon, 2012, 50, 535-541.	5.4	35