Inga Põldsalu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942886/publications.pdf

Version: 2024-02-01

840585 610775 33 594 11 24 citations h-index g-index papers 36 36 36 600 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	lonic and Capacitive Artificial Muscle for Biomimetic Soft Robotics. Advanced Engineering Materials, 2015, 17, 84-94.	1.6	141
2	Ionic electroactive polymer artificial muscles in space applications. Scientific Reports, 2014, 4, 6913.	1.6	64
3	lonic liquid-based actuators working in air: The effect of ambient humidity. Sensors and Actuators B: Chemical, 2014, 202, 114-122.	4.0	63
4	Charging a supercapacitor-like laminate with ambient moisture: from a humidity sensor to an energy harvester. Physical Chemistry Chemical Physics, 2013, 15, 9605.	1.3	50
5	Protocells: Milestones and Recent Advances. Small, 2022, 18, e2106624.	5.2	45
6	Thin ink-jet printed trilayer actuators composed of PEDOT:PSS on interpenetrating polymer networks. Sensors and Actuators B: Chemical, 2018, 258, 1072-1079.	4.0	40
7	A carbide-derived carbon laminate used as a mechanoelectrical sensor. Carbon, 2012, 50, 535-541.	5.4	35
8	Scalable fabrication of ionic and capacitive laminate actuators for soft robotics. Sensors and Actuators B: Chemical, 2017, 246, 154-163.	4.0	35
9	Inkjetâ€printed hybrid conducting polymer-activated carbon aerogel linear actuators driven in an organic electrolyte. Sensors and Actuators B: Chemical, 2017, 250, 44-51.	4.0	21
10	Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks. Lab on A Chip, 2013, 13, 3822.	3.1	12
11	Lifetime measurements of ionic electroactive polymer actuators. Journal of Intelligent Material Systems and Structures, 2014, 25, 2267-2275.	1.4	12
12	Repair of large area pores in supported double bilayers. Soft Matter, 2013, 9, 2787.	1.2	11
13	Encapsulation of ionic electromechanically active polymer actuators. Smart Materials and Structures, 2019, 28, 074002.	1.8	10
14	Modelling and Control of Ionic Electroactive Polymer Actuators under Varying Humidity Conditions. Actuators, 2018, 7, 7.	1,2	9
15	Mechanoelectrical impedance of a carbide-derived carbon-based laminate motion sensor at large bending deflections. Smart Materials and Structures, 2013, 22, 104015.	1.8	8
16	Mechanical and electro-mechanical properties of EAP actuators with inkjet printed electrodes. Synthetic Metals, 2018, 246, 122-127.	2.1	8
17	Printed PEDOT:PSS Trilayer: Mechanism Evaluation and Application in Energy Storage. Materials, 2020, 13, 491.	1.3	4
18	Pulse-width-modulated charging of ionic and capacitive actuators. , 2014, , .		3

#	Article	IF	CITATIONS
19	Fabrication of Carbon-Based Ionic Electromechanically Active Soft Actuators. Journal of Visualized Experiments, 2020, , .	0.2	3
20	Mixed fatty acid-phospholipid protocell networks. Physical Chemistry Chemical Physics, 2021, 23, 26948-26954.	1.3	3
21	Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Preâ€Noachian Mars**. ChemSystemsChem, 2022, 4, .	1.1	3
22	Micro-mechanics of ionic electroactive polymer actuators. Proceedings of SPIE, 2015, , .	0.8	2
23	Long-term degradation of the ionic electroactive polymer actuators. Proceedings of SPIE, 2015, , .	0.8	2
24	Surface-Assisted Self-Assembly of Fatty Acids to Cell-Like Compartments. Biophysical Journal, 2020, 118, 82a.	0.2	2
25	Carbon-polymer-ionic liquid composite as a motion sensor. Proceedings of SPIE, 2012, , .	0.8	1
26	An ionic liquid-based actuator as a humidity sensor. , 2013, , .		1
27	Fabrication of ion-conducting carbon-polymer composite electrodes by spin-coating., 2015, , .		1
28	Microfluidic technology for investigation of protein function in single adherent cells. Methods in Enzymology, 2019, 628, 145-172.	0.4	1
29	Spontaneous formation of prebiotic compartment colonies on Hadean Earth and Pre-Noachian Mars. Biophysical Journal, 2022, 121, 68a.	0.2	1
30	Ionic EAP transducers with amorphous nanoporous carbon electrodes. Proceedings of SPIE, 2012, , .	0.8	0
31	Surface-Assisted Formation of Model Protocells from Fatty Acid and Phospholipid Mixtures. Biophysical Journal, 2021, 120, 223a.	0.2	0
32	Spontaneous Formation of Prebiotic Compartment Colonies on Hadean Earth and Preâ€Noachian Mars. ChemSystemsChem, 2022, 4, .	1.1	0
33	Protocells: Milestones and Recent Advances (Small 18/2022). Small, 2022, 18, .	5.2	O