
Marttiina V Rantala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sea level rise may contribute to the greening of Arctic coastal freshwaters – Implications from the ontogeny of Greiner Lake, Nunavut, Canada. Catena, 2022, 211, 105969.	5.0	1
2	Traces of sunlight in the organic matter biogeochemistry of two shallow subarctic lakes. Biogeochemistry, 2021, 155, 169-188.	3.5	2
3	Late-Holocene variability in chironomid functional assemblages and carbon utilization in a tundra lake food web. Hydrobiologia, 2020, 847, 895-911.	2.0	4
4	A Holocene record of aquatic bio-optics in subarctic fennoscandia. Quaternary Science Reviews, 2020, 243, 106491.	3.0	2
5	Biogeochemical and photobiological responses of subarctic lakes to UV radiation. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111932.	3.8	6
6	Recent changes in chironomid communities and hypolimnetic oxygen conditions relate to organic carbon in subarctic ecotonal lakes. Science of the Total Environment, 2019, 646, 238-244.	8.0	9
7	A hidden species becoming visible: biogeography and ecology of Rhynchotalona latens (Cladocera,) Tj ETQq1 1 C	.784314 2.0	rgBJ /Overloc
8	Cladoceran (Crustacea) Niches, Sex, and Sun Bathing—A Long-Term Record of Tundra Lake (Lapland) Functioning and Paleo-Optics. Water (Switzerland), 2019, 11, 2008.	2.7	2
9	Biogeochemical cycling and ecological thresholds in a High Arctic lake (Svalbard). Aquatic Sciences, 2019, 81, 1.	1.5	18
10	Environmental controls on benthic food web functions and carbon resource use in subarctic lakes. Freshwater Biology, 2019, 64, 643-658.	2.4	15
11	Spatioâ€ŧemporal cladoceran (Branchiopoda) responses to climate change and UV radiation in subarctic ecotonal lakes. Journal of Biogeography, 2018, 45, 1954-1965.	3.0	12
12	Characterization of the Medieval Climate Anomaly, Little Ice Age and recent warming in northern Lapland. International Journal of Climatology, 2017, 37, 1257-1266.	3.5	11
13	Climate drivers of diatom distribution in shallow subarctic lakes. Freshwater Biology, 2017, 62, 1971-1985.	2.4	19
14	Tracking the Limnoecological History of Lake Hiidenvesi (Southern Finland) Using the Paleolimnological Approach. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	8
15	Sources and controls of organic carbon in lakes across the subarctic treeline. Biogeochemistry, 2016, 129, 235-253.	3.5	33
16	Temperature controls organic carbon sequestration in a subarctic lake. Scientific Reports, 2016, 6, 34780.	3.3	22
17	Long-term changes in pigmentation of arctic Daphnia provide potential for reconstructing aquatic UV exposure. Quaternary Science Reviews, 2016, 144, 44-50.	3.0	10
18	Environmental determinants of chironomid communities in remote northern lakes across the treeline – Implications for climate change assessments. Ecological Indicators, 2016, 61, 991-999.	6.3	28

MARTTIINA V RANTALA

#	Article	IF	CITATIONS
19	Role of terrestrial carbon in aquatic <scp>UV</scp> exposure and photoprotective pigmentation of meiofauna in subarctic lakes. Freshwater Biology, 2015, 60, 2435-2444.	2.4	23
20	Ultraviolet radiation exposure of a high arctic lake in <scp>S</scp> valbard during the <scp>H</scp> olocene. Boreas, 2015, 44, 401-412.	2.4	9
21	Late Holocene changes in the humic state of a boreal lake and their associations with organic matter transport and climate dynamics. Biogeochemistry, 2015, 123, 63-82.	3.5	14
22	Sedimentary cladoceran assemblages and their functional attributes record late Holocene climate variability in southern Finland. Journal of Paleolimnology, 2015, 54, 239-252.	1.6	11
23	Climate controls on the Holocene development of a subarctic lake in northern Fennoscandia. Quaternary Science Reviews, 2015, 126, 175-185.	3.0	15