Caiwei Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. Journal of Power Sources, 2011, 196, 10465-10471.	7.8	139
2	Laserâ€Induced Molybdenum Carbide–Graphene Composites for 3D Foldable Paper Electronics. Advanced Materials, 2018, 30, e1800062.	21.0	135
3	Highâ€Voltage Supercapacitors Based on Aqueous Electrolytes. ChemElectroChem, 2019, 6, 976-988.	3.4	133
4	A high-energy-density micro supercapacitor of asymmetric MnO2–carbon configuration by using micro-fabrication technologies. Journal of Power Sources, 2013, 234, 302-309.	7.8	124
5	A Review of On-Chip Micro Supercapacitors for Integrated Self-Powering Systems. Journal of Microelectromechanical Systems, 2017, 26, 949-965.	2.5	106
6	Laser-induced and KOH-activated 3D graphene: A flexible activated electrode fabricated via direct laser writing for in-plane micro-supercapacitors. Chemical Engineering Journal, 2020, 393, 124672.	12.7	93
7	Titanium Disulfide Coated Carbon Nanotube Hybrid Electrodes Enable High Energy Density Symmetric Pseudocapacitors. Advanced Materials, 2018, 30, 1704754.	21.0	92
8	Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsystems and Nanoengineering, 2018, 4, 36.	7.0	68
9	Direct Prototyping of Patterned Nanoporous Carbon: A Route from Materials to On-chip Devices. Scientific Reports, 2013, 3, 2294.	3.3	61
10	Wearable woven supercapacitor fabrics with high energy density and load-bearing capability. Scientific Reports, 2017, 7, 14324.	3.3	52
11	Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities. ACS Applied Materials & Interfaces, 2017, 9, 39391-39398.	8.0	41
12	Micro supercapacitors based on a 3D structure with symmetric graphene or activated carbon electrodes. Journal of Micromechanics and Microengineering, 2013, 23, 114013.	2.6	31
13	Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors. Journal of Power Sources, 2021, 499, 229962.	7.8	27
14	Flexible micro-supercapacitors prepared using direct-write nanofibers. RSC Advances, 2017, 7, 11724-11731.	3.6	26
15	Breathable 3D Supercapacitors Based on Activated Carbon Fiber Veil. Advanced Materials Technologies, 2018, 3, 1800209.	5.8	19
16	Hierarchically nanostructured carbon fiber-nickel-carbon nanotubes for high-performance supercapacitor electrodes. Materials Letters, 2017, 186, 70-73.	2.6	12
17	Laminate composite-based highly durable and flexible supercapacitors for wearable energy storage. Journal of Energy Storage, 2020, 29, 101460.	8.1	12
18	A novel assembly method using multi-layer bonding technique for micro direct methanol fuel cells and their stack. Sensors and Actuators A: Physical, 2012, 188, 246-254.	4.1	11

CAIWEI SHEN

#	Article	IF	CITATIONS
19	Nanostructured manganese dioxides as active materials for micro-supercapacitors. Micro and Nano Letters, 2012, 7, 744.	1.3	9
20	High-energy-density on-chip supercapacitors using manganese dioxide-decorated direct-prototyped porous carbon electrodes. , 2014, , .		9
21	Fabrication and tests of a three-dimensional microsupercapacitor using SU-8 photoresist as the separator. Micro and Nano Letters, 2012, 7, 1166-1169.	1.3	8
22	Mass Loadingâ€Independent Energy Storage with Reduced Graphene Oxide and Carbon Fiber. ChemElectroChem, 2019, 6, 6009-6015.	3.4	7
23	Solid polymer electrolytes with hydrates for structural supercapacitors. Journal of Energy Storage, 2022, 51, 104459.	8.1	6
24	A micro glucose sensor based on direct prototyping mesoporous carbon electrode. Microsystem Technologies, 2015, 21, 1337-1343.	2.0	4
25	Paper Electronics: Laserâ€Induced Molybdenum Carbide–Graphene Composites for 3D Foldable Paper Electronics (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870192.	21.0	4
26	Direct prototyping of 3D micro supercapacitors based on in-situ fabricated nanoporous carbon electrodes. , 2013, , .		2
27	A study of nano-structured manganese dioxides and their composites as electrode materials for micro supercapacitors. , 2012, , .		0
28	A micro trace heavy metal sensor based on direct prototyping mesoporous carbon electrode. , 2014, , .		0
29	Semi-transparent foldable supercapacitor for 3D structured energy storage devices. , 2018, , .		0
30	Design of Machine-Washable and Wearable Supercapacitors Using Composite Laminates. ECS Meeting Abstracts, 2019, , .	0.0	0