
Bo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942624/publications.pdf Version: 2024-02-01

Version: 202 1 02 01

BO WANG

#	Article	lF	CITATIONS
1	Formation of millisecond pulsars with long orbital periods by accretion-induced collapse of white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6011-6021.	4.4	16
2	SN 2012ij: A Low-luminosity Type la Supernova and Evidence for a Continuous Distribution from a 91bg-like Explosion to Normal Ones*. Astrophysical Journal, 2022, 927, 142.	4.5	7
3	Observations of the very young Type Ia Supernova 2019np with early-excess emission. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3541-3558.	4.4	15
4	He-shell flashes on the surface of oxygen-neon white dwarfs. Research in Astronomy and Astrophysics, 2021, 21, 034.	1.7	3
5	The effect of aspherical stellar wind of giant stars on the symbiotic channel of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4061-4074.	4.4	5
6	Helium enrichment during classical nova outbursts. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2975-2982.	4.4	1
7	Ultracompact X-ray binaries with He star companions. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4654-4666.	4.4	21
8	The fractions of post-binary-interaction stars and evolved blue straggler stars on the red giant branch of globular clusters. Research in Astronomy and Astrophysics, 2021, 21, 223.	1.7	3
9	The formation of neutron star systems through accretion-induced collapse in white-dwarf binaries. Research in Astronomy and Astrophysics, 2020, 20, 135.	1.7	39
10	The formation of single neutron stars from double white-dwarf mergers via accretion-induced collapse. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3422-3431.	4.4	18
11	The formation of type la supernovae from carbon–oxygen–silicon white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1445-1460.	4.4	10
12	The C/O ratio of He-accreting carbon-oxygen white dwarfs and type Ia supernovae. Research in Astronomy and Astrophysics, 2020, 20, 003.	1.7	3
13	Mass transfer of low-mass binaries and chemical anomalies among unevolved stars in globular clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5479-5488.	4.4	4
14	The White Dwarf Binary Pathways Survey. V. The Gaia White Dwarf Plus AFGK Binary Sample and the Identification of 23 Close Binaries. Astrophysical Journal, 2020, 905, 38.	4.5	12
15	Detectability of Ultra-compact X-Ray Binaries as LISA Sources. Astrophysical Journal Letters, 2020, 900, L8.	8.3	38
16	Circumstellar properties of TypeÂla supernovae from the helium star donor channel. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3949-3956.	4.4	9
17	Evolving neutron star+helium star systems to intermediate-mass binary pulsars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 752-757.	4.4	4
18	The outcomes of carbon–oxygen white dwarfs accreting CO-rich material. Monthly Notices of the Royal Astronomical Society, 2019, 483, 263-275.	4.4	16

Bo Wang

#	Article	IF	CITATIONS
19	Off-centre carbon burning in He-accreting carbon–oxygen white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2977-2981.	4.4	9
20	Past and future of the central double-degenerate core of Henize 2–428. Research in Astronomy and Astrophysics, 2019, 19, 057.	1.7	1
21	Optical and Radio Transients after the Collapse of Super-Chandrasekhar White Dwarf Merger Remnants. Astrophysical Journal Letters, 2019, 870, L23.	8.3	15
22	Carbon Stars Identified from LAMOST DR4 Using Machine Learning. Astrophysical Journal, Supplement Series, 2018, 234, 31.	7.7	37
23	WD+AGB star systems as the progenitors of type Ia supernovae. Proceedings of the International Astronomical Union, 2018, 14, 540-541.	0.0	0
24	The single-degenerate model for the progenitors of accretion-induced collapse events. Monthly Notices of the Royal Astronomical Society, 2018, 481, 439-446.	4.4	19
25	Stellar and AGN Feedback in Isolated Early-type Galaxies: The Role in Regulating Star Formation and ISM Properties. Astrophysical Journal, 2018, 866, 70.	4.5	25
26	ONe WD+He star systems as the progenitors of IMBPs. Proceedings of the International Astronomical Union, 2018, 14, 478-479.	0.0	0
27	Mass-accreting white dwarfs and type Ia supernovae. Research in Astronomy and Astrophysics, 2018, 18, 049.	1.7	98
28	Accreting CO material onto ONe white dwarfs towards accretion-induced collapse. Research in Astronomy and Astrophysics, 2018, 18, 036.	1.7	15
29	He-accreting carbon–oxygen white dwarfs and Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1593-1599.	4.4	49
30	Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys. Astrophysical Journal Letters, 2017, 847, L9.	8.3	32
31	The WD+He star binaries as the progenitors of type la supernovae. Open Astronomy, 2017, 26, .	0.6	0
32	Double CO WD systems from the WD+He subgiant channel and type Ia supernovae. Open Astronomy, 2016, 26, .	0.6	0
33	Accreting He-rich material onto carbon-oxygen white dwarfs until explosive carbon ignition. Research in Astronomy and Astrophysics, 2016, 16, 160.	1.7	11
34	A LUMINOUS PECULIAR TYPE IA SUPERNOVA SN 2011HR: MORE LIKE SN 1991T OR SN 2007if?. Astrophysical Journal, 2016, 817, 114.	4.5	18
35	Binary population synthesis for the core-degenerate scenario of type Ia supernova progenitors. Research in Astronomy and Astrophysics, 2015, 15, 1701-1712.	1.7	5
36	The birthrates of SNe Ia in globular clusters. Proceedings of the International Astronomical Union, 2015, 12, 343-344.	0.0	0

BO WANG

#	Article	IF	CITATIONS
37	Is the X-ray pulsating companion of HD 49798 a possible type Ia supernova progenitor?. Research in Astronomy and Astrophysics, 2015, 15, 1813-1822.	1.7	12
38	19 low mass hypervelocity star candidates from the first data release of the LAMOST survey. Research in Astronomy and Astrophysics, 2015, 15, 1364-1377.	1.7	19
39	Constraints on single-degenerate Chandrasekhar mass progenitors of Type Iax supernovae. Astronomy and Astrophysics, 2015, 574, A12.	5.1	31
40	OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE NARROW-LINED TYPE Ia SN 2012fr IN NGC 1365. Astronomical Journal, 2014, 148, 1.	4.7	60
41	Double-detonation model of type Ia supernovae with a variable helium layer ignition mass. Research in Astronomy and Astrophysics, 2014, 14, 1146-1156.	1.7	3
42	On the evolution of rotating accreting white dwarfs and Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2340-2352.	4.4	36
43	Reanalysis of the Isotopic Mixture of Neutron-Capture Elements in the Metal-Poor Star HD 175305. Chinese Physics Letters, 2012, 29, 019701.	3.3	1
44	Progenitors of type Ia supernovae and their surviving companion stars. Proceedings of the International Astronomical Union, 2012, 8, 321-322.	0.0	0
45	LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan. Research in Astronomy and Astrophysics, 2012, 12, 735-754.	1.7	404
46	Progenitors of type la supernovae. New Astronomy Reviews, 2012, 56, 122-141.	12.8	300
47	Photometric analysis of a blue straggler eclipsing binary in the old open cluster NGC 2141. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1500-1504.	5.1	1
48	Evolution of the luminosity function and obscuration of active galactic nuclei: comparison between X-ray and infrared. Monthly Notices of the Royal Astronomical Society, 2012, 423, 464-477.	4.4	10
49	Helium Star Donor Channel to Type Ia Supernovae and Their Surviving Companion Stars. Proceedings of the International Astronomical Union, 2011, 7, 205-208.	0.0	0
50	WD + He star systems as the progenitors of Type la supernovae and their surviving companion stars. Astrophysics and Space Science, 2010, 329, 293-296.	1.4	6
51	Birthrates and delay times of Type Ia supernovae. Science China: Physics, Mechanics and Astronomy, 2010, 53, 586-590.	5.1	17
52	The progenitors of Type Ia supernovae with long delay times. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2729-2738.	4.4	88
53	A likely candidate of type Ia supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798. Research in Astronomy and Astrophysics, 2010, 10, 681-688.	1.7	22
54	WD+RG systems as the progenitors of type Ia supernovae. Research in Astronomy and Astrophysics, 2010, 10, 235-243.	1.7	16

_ D	\sim		'Ar	10
в	()	W	ΔΝ	M (.
	\mathbf{U}	~ ~	7 M	10

#	Article	IF	CITATIONS
55	EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES. Astrophysical Journal, 2009, 701, 1540-1546.	4.5	86
56	Distribution of ⁵⁶ Ni Yields of Type Ia Supernovae and its Implication for Progenitors. Research in Astronomy and Astrophysics, 2008, 8, 71-80.	1.1	22