Bo Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942624/publications.pdf

Version: 2024-02-01

		430874	276875
56	1,692	18	41
papers	citations	h-index	g-index
56	56	56	1860
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan. Research in Astronomy and Astrophysics, 2012, 12, 735-754.	1.7	404
2	Progenitors of type la supernovae. New Astronomy Reviews, 2012, 56, 122-141.	12.8	300
3	Mass-accreting white dwarfs and type Ia supernovae. Research in Astronomy and Astrophysics, 2018, 18, 049.	1.7	98
4	The progenitors of Type Ia supernovae with long delay times. Monthly Notices of the Royal Astronomical Society, 2010, 401, 2729-2738.	4.4	88
5	EVOLVING TO TYPE Ia SUPERNOVAE WITH SHORT DELAY TIMES. Astrophysical Journal, 2009, 701, 1540-1546.	4.5	86
6	OPTICAL AND ULTRAVIOLET OBSERVATIONS OF THE NARROW-LINED TYPE Ia SN 2012fr IN NGC 1365. Astronomical Journal, 2014, 148, 1.	4.7	60
7	He-accreting carbon–oxygen white dwarfs and Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2017, 472, 1593-1599.	4.4	49
8	The formation of neutron star systems through accretion-induced collapse in white-dwarf binaries. Research in Astronomy and Astrophysics, 2020, 20, 135.	1.7	39
9	Detectability of Ultra-compact X-Ray Binaries as LISA Sources. Astrophysical Journal Letters, 2020, 900, L8.	8.3	38
10	Carbon Stars Identified from LAMOST DR4 Using Machine Learning. Astrophysical Journal, Supplement Series, 2018, 234, 31.	7.7	37
11	On the evolution of rotating accreting white dwarfs and Type la supernovae. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2340-2352.	4.4	36
12	Discovery of Two New Hypervelocity Stars from the LAMOST Spectroscopic Surveys. Astrophysical Journal Letters, 2017, 847, L9.	8.3	32
13	Constraints on single-degenerate Chandrasekhar mass progenitors of Type lax supernovae. Astronomy and Astrophysics, 2015, 574, A12.	5.1	31
14	Stellar and AGN Feedback in Isolated Early-type Galaxies: The Role in Regulating Star Formation and ISM Properties. Astrophysical Journal, 2018, 866, 70.	4.5	25
15	Distribution of ⁵⁶ Ni Yields of Type Ia Supernovae and its Implication for Progenitors. Research in Astronomy and Astrophysics, 2008, 8, 71-80.	1.1	22
16	A likely candidate of type la supernova progenitors: the X-ray pulsating companion of the hot subdwarf HD 49798. Research in Astronomy and Astrophysics, 2010, 10, 681-688.	1.7	22
17	Ultracompact X-ray binaries with He star companions. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4654-4666.	4.4	21
18	19 low mass hypervelocity star candidates from the first data release of the LAMOST survey. Research in Astronomy and Astrophysics, 2015, 15, 1364-1377.	1.7	19

#	Article	IF	CITATIONS
19	The single-degenerate model for the progenitors of accretion-induced collapse events. Monthly Notices of the Royal Astronomical Society, 2018, 481, 439-446.	4.4	19
20	The formation of single neutron stars from double white-dwarf mergers via accretion-induced collapse. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3422-3431.	4.4	18
21	A LUMINOUS PECULIAR TYPE IA SUPERNOVA SN 2011HR: MORE LIKE SN 1991T OR SN 2007if?. Astrophysical Journal, 2016, 817, 114.	4.5	18
22	Birthrates and delay times of Type Ia supernovae. Science China: Physics, Mechanics and Astronomy, 2010, 53, 586-590.	5.1	17
23	WD+RG systems as the progenitors of type la supernovae. Research in Astronomy and Astrophysics, 2010, 10, 235-243.	1.7	16
24	The outcomes of carbon–oxygen white dwarfs accreting CO-rich material. Monthly Notices of the Royal Astronomical Society, 2019, 483, 263-275.	4.4	16
25	Formation of millisecond pulsars with long orbital periods by accretion-induced collapse of white dwarfs. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6011-6021.	4.4	16
26	Accreting CO material onto ONe white dwarfs towards accretion-induced collapse. Research in Astronomy and Astrophysics, 2018, 18, 036.	1.7	15
27	Optical and Radio Transients after the Collapse of Super-Chandrasekhar White Dwarf Merger Remnants. Astrophysical Journal Letters, 2019, 870, L23.	8.3	15
28	Observations of the very young Type Ia Supernova 2019np with early-excess emission. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3541-3558.	4.4	15
29	Is the X-ray pulsating companion of HD 49798 a possible type la supernova progenitor?. Research in Astronomy and Astrophysics, 2015, 15, 1813-1822.	1.7	12
30	The White Dwarf Binary Pathways Survey. V. The Gaia White Dwarf Plus AFGK Binary Sample and the Identification of 23 Close Binaries. Astrophysical Journal, 2020, 905, 38.	4.5	12
31	Accreting He-rich material onto carbon-oxygen white dwarfs until explosive carbon ignition. Research in Astronomy and Astrophysics, 2016, 16, 160.	1.7	11
32	Evolution of the luminosity function and obscuration of active galactic nuclei: comparison between X-ray and infrared. Monthly Notices of the Royal Astronomical Society, 2012, 423, 464-477.	4.4	10
33	The formation of type Ia supernovae from carbon–oxygen–silicon white dwarfs. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1445-1460.	4.4	10
34	Circumstellar properties of TypeÂla supernovae from the helium star donor channel. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3949-3956.	4.4	9
35	Off-centre carbon burning in He-accreting carbon–oxygen white dwarfs. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2977-2981.	4.4	9
36	SN 2012ij: A Low-luminosity Type Ia Supernova and Evidence for a Continuous Distribution from a 91bg-like Explosion to Normal Ones*. Astrophysical Journal, 2022, 927, 142.	4.5	7

#	Article	IF	CITATIONS
37	WD + He star systems as the progenitors of Type la supernovae and their surviving companion stars. Astrophysics and Space Science, 2010, 329, 293-296.	1.4	6
38	Binary population synthesis for the core-degenerate scenario of type Ia supernova progenitors. Research in Astronomy and Astrophysics, 2015, 15, 1701-1712.	1.7	5
39	The effect of aspherical stellar wind of giant stars on the symbiotic channel of Type Ia supernovae. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4061-4074.	4.4	5
40	Evolving neutron star+helium star systems to intermediate-mass binary pulsars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 752-757.	4.4	4
41	Mass transfer of low-mass binaries and chemical anomalies among unevolved stars in globular clusters. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5479-5488.	4.4	4
42	Double-detonation model of type la supernovae with a variable helium layer ignition mass. Research in Astronomy and Astrophysics, 2014, 14, 1146-1156.	1.7	3
43	The C/O ratio of He-accreting carbon-oxygen white dwarfs and type la supernovae. Research in Astronomy and Astrophysics, 2020, 20, 003.	1.7	3
44	He-shell flashes on the surface of oxygen-neon white dwarfs. Research in Astronomy and Astrophysics, 2021, 21, 034.	1.7	3
45	The fractions of post-binary-interaction stars and evolved blue straggler stars on the red giant branch of globular clusters. Research in Astronomy and Astrophysics, 2021, 21, 223.	1.7	3
46	Reanalysis of the Isotopic Mixture of Neutron-Capture Elements in the Metal-Poor Star HD 175305. Chinese Physics Letters, 2012, 29, 019701.	3.3	1
47	Photometric analysis of a blue straggler eclipsing binary in the old open cluster NGC 2141. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1500-1504.	5.1	1
48	Past and future of the central double-degenerate core of Henize 2–428. Research in Astronomy and Astrophysics, 2019, 19, 057.	1.7	1
49	Helium enrichment during classical nova outbursts. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2975-2982.	4.4	1
50	Helium Star Donor Channel to Type Ia Supernovae and Their Surviving Companion Stars. Proceedings of the International Astronomical Union, 2011, 7, 205-208.	0.0	0
51	Progenitors of type la supernovae and their surviving companion stars. Proceedings of the International Astronomical Union, 2012, 8, 321-322.	0.0	0
52	The birthrates of SNe Ia in globular clusters. Proceedings of the International Astronomical Union, 2015, 12, 343-344.	0.0	0
53	Double CO WD systems from the WD+He subgiant channel and type Ia supernovae. Open Astronomy, 2016, 26, .	0.6	0
54	The WD+He star binaries as the progenitors of type la supernovae. Open Astronomy, 2017, 26, .	0.6	0

#	Article	IF	CITATIONS
55	WD+AGB star systems as the progenitors of type Ia supernovae. Proceedings of the International Astronomical Union, 2018, 14, 540-541.	0.0	O
56	ONe WD+He star systems as the progenitors of IMBPs. Proceedings of the International Astronomical Union, 2018, 14, 478-479.	0.0	0