Gyungah Jun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942509/publications.pdf

Version: 2024-02-01

		117625	133252
76	13,748	34	59
papers	citations	h-index	g-index
88	88	88	16647
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
3	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	21.4	1,676
4	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
5	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nature Genetics, 2022, 54, 412-436.	21.4	700
6	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
7	Meta-analysis Confirms CR1, CLU, and PICALM as Alzheimer Disease Risk Loci and Reveals Interactions With APOE Genotypes. Archives of Neurology, 2010, 67, 1473.	4.5	376
8	Variants in the ATP-Binding Cassette Transporter (ABCA7), Apolipoprotein E ϵ4, and the Risk of Late-Onset Alzheimer Disease in African Americans. JAMA - Journal of the American Medical Association, 2013, 309, 1483.	7.4	360
9	Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nature Medicine, 2019, 25, 1680-1683.	30.7	328
10	Exceptionally low likelihood of Alzheimer's dementia in APOE2 homozygotes from a 5,000-person neuropathological study. Nature Communications, 2020, 11, 667.	12.8	246
11	Beta-amyloid deposition in chronic traumatic encephalopathy. Acta Neuropathologica, 2015, 130, 21-34.	7.7	234
12	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
13	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	9.0	166
14	Transethnic genomeâ€wide scan identifies novel Alzheimer's disease loci. Alzheimer's and Dementia, 2017, 13, 727-738.	0.8	166
15	Dissection of Genomewide-Scan Data in Extended Families Reveals a Major Locus and Oligogenic Susceptibility for Age-Related Macular Degeneration. American Journal of Human Genetics, 2004, 74, 20-39.	6.2	162
16	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
17	SORL1 Is Genetically Associated with Late-Onset Alzheimer's Disease in Japanese, Koreans and Caucasians. PLoS ONE, 2013, 8, e58618.	2.5	149
18	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	9.0	144

#	Article	IF	Citations
19	EPHA2 Is Associated with Age-Related Cortical Cataract in Mice and Humans. PLoS Genetics, 2009, 5, e1000584.	3.5	140
20	Genome-Wide Scan for Estimated Glomerular Filtration Rate in Multi-Ethnic Diabetic Populations: The Family Investigation of Nephropathy and Diabetes (FIND). Diabetes, 2008, 57, 235-243.	0.6	92
21	Two novel loci, <i>COBL</i> and <i>SLC10A2</i> , for Alzheimer's disease in African Americans. Alzheimer's and Dementia, 2017, 13, 119-129.	0.8	87
22	Genome-Wide Linkage Study of Retinal Vessel Diameters in the Beaver Dam Eye Study. Hypertension, 2006, 47, 797-802.	2.7	71
23	Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration. Human Genomics, 2011, 5, 538.	2.9	70
24	Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14485-14490.	7.1	69
25	Genomeâ€wide association study of Alzheimer's disease endophenotypes at prediagnosis stages. Alzheimer's and Dementia, 2018, 14, 623-633.	0.8	64
26	<scp><i>PLXNA</i></scp> <i>4</i> is associated with <scp>A</scp> lzheimer disease and modulates tau phosphorylation. Annals of Neurology, 2014, 76, 379-392.	5.3	60
27	Multiple loci influencing hippocampal degeneration identified by genome scan. Annals of Neurology, 2012, 72, 65-75.	5.3	59
28	î-Catenin Is Genetically and Biologically Associated with Cortical Cataract and Future Alzheimer-Related Structural and Functional Brain Changes. PLoS ONE, 2012, 7, e43728.	2.5	58
29	A search for age-related macular degeneration risk variants in Alzheimer disease genes and pathways. Neurobiology of Aging, 2014, 35, 1510.e7-1510.e18.	3.1	53
30	A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration. PLoS ONE, 2011, 6, e25598.	2.5	46
31	Global and local ancestry in Africanâ€Americans: Implications for Alzheimer's disease risk. Alzheimer's and Dementia, 2016, 12, 233-243.	0.8	42
32	APOE Promoter Polymorphism-219T/G is an Effect Modifier of the Influence of APOE Îμ4 on Alzheimer's Disease Risk in a Multiracial Sample. Journal of Clinical Medicine, 2019, 8, 1236.	2.4	40
33	Associations between brain inflammatory profiles and human neuropathology are altered based on apolipoprotein E Îμ4 genotype. Scientific Reports, 2020, 10, 2924.	3.3	40
34	Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurology, 2015, 72, 1313.	9.0	39
35	Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Human Molecular Genetics, 2014, 23, 6119-6128.	2.9	35
36	Structural equation model-based genome scan for the metabolic syndrome. BMC Genetics, 2003, 4, S99.	2.7	34

#	Article	IF	Citations
37	Influence of ROBO1 and RORA on Risk of Age-Related Macular Degeneration Reveals Genetically Distinct Phenotypes in Disease Pathophysiology. PLoS ONE, 2011, 6, e25775.	2.5	34
38	Genome-wide pleiotropy analysis of neuropathological traits related to Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 22.	6.2	27
39	Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE ε2 protective effect in Alzheimer disease. Molecular Psychiatry, 2021, 26, 6054-6064.	7.9	27
40	Genome-Wide Analyses Demonstrate Novel Loci That Predispose to Drusen Formation., 2005, 46, 3081.		24
41	Comparison of methods for multivariate gene-based association tests for complex diseases using common variants. European Journal of Human Genetics, 2019, 27, 811-823.	2.8	24
42	Cytokine Levels in Human Vitreous in Proliferative Diabetic Retinopathy. Cells, 2021, 10, 1069.	4.1	23
43	Association of Cognitive Function with Amyloid- \hat{l}^2 and Tau Proteins in the Vitreous Humor. Journal of Alzheimer's Disease, 2019, 68, 1429-1438.	2.6	22
44	Tau phosphorylation sites serine202 and serine396 are differently altered in chronic traumatic encephalopathy and Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1511-1522.	0.8	22
45	Genomeâ€wide association and multiâ€omics studies identify <i>MGMT</i> as a novel risk gene for Alzheimer's disease among women. Alzheimer's and Dementia, 2023, 19, 896-908.	0.8	19
46	Plasma pâ€ŧau ₁₈₁ shows stronger network association to Alzheimer's disease dementia than neurofilament light and total tau. Alzheimer's and Dementia, 2022, 18, 1523-1536.	0.8	18
47	Protein phosphatase 2A and complement component 4 are linked to the protective effect of <i>APOE</i> É>2 for Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 2042-2054.	0.8	18
48	Blood and brain transcriptome analysis reveals APOE genotype-mediated and immune-related pathways involved in Alzheimer disease. Alzheimer's Research and Therapy, 2022, 14, 30.	6.2	16
49	Ante-mortem plasma phosphorylated tau (181) predicts Alzheimer's disease neuropathology and regional tau at autopsy. Brain, 2022, 145, 3546-3557.	7.6	15
50	Genetics of Pigment Changes and Geographic Atrophy., 2007, 48, 3005.		14
51	Neurofilament light chain in the vitreous humor of the eye. Alzheimer's Research and Therapy, 2020, 12, 111.	6.2	13
52	Associations Between Methylenetetrahydrofolate Reductase Polymorphisms, Serum Homocysteine Levels, and Incident Cortical Cataract. JAMA Ophthalmology, 2016, 134, 522.	2.5	11
53	Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Communications Biology, 2020, 3, 755.	4.4	10
54	A missense variant in SHARPIN mediates Alzheimer's disease-specific brain damages. Translational Psychiatry, 2021, 11, 590.	4.8	10

#	Article	IF	CITATIONS
55	An autosome-wide search using longitudinal data for loci linked to type 2 diabetes progression. BMC Genetics, 2003, 4, S8.	2.7	8
56	CpGâ€related SNPs in the MS4A region have a doseâ€dependent effect on risk of late–onset Alzheimer disease. Aging Cell, 2019, 18, e12964.	6.7	8
57	Using linkage analysis of large pedigrees to guide association analyses. BMC Proceedings, 2011, 5, S79.	1.6	7
58	Aldose Reductase Polymorphisms, Fasting Blood Glucose, and Age-Related Cortical Cataract., 2018, 59, 4755.		5
59	Defining Alzheimer's disease subtypes using polygenic risk scores integrated with genomic and brain transcriptomic profiles. Alzheimer's and Dementia, 2020, 16, e046449.	0.8	3
60	APOEâ€stratified genomeâ€wide association analysis identifies novel Alzheimer disease candidate risk loci for African Americans. Alzheimer's and Dementia, 2021, 17, e056383.	0.8	2
61	Optimizing the evidence for linkage by permuting marker order. BMC Genetics, 2005, 6, S61.	2.7	1
62	O4-06-05: SORL1 is genetically associated with late-onset Alzheimer's disease in Japanese, Koreans and Caucasians., 2013, 9, P693-P694.		1
63	O4-06-02: Genetic variation in PLXNA4 associated with susceptibility of Alzheimer's disease through tau phosphorylation., 2013, 9, P692-P692.		1
64	P1-035: BIVARIATE GENOME-WIDE ASSOCIATION STUDY OF ALZHEIMER DISEASE ENDOPHENOTYPES IDENTIFIES NOVEL LOCI., 2014, 10, P316-P316.		0
65	P2-031: A VARIANT IN STK24 ACHIEVES GENOME-WIDE SIGNIFICANCE IN AFRICAN AMERICANS USING A LIABILITY MODEL. , 2014, 10, P481-P481.		O
66	O1-04-03: LOW-FREQUENCY VARIANT IMPUTATION IDENTIFIES NOVEL DISEASE-ASSOCIATED LOCI IN A GENOME-WIDE ASSOCIATION STUDY OF LATE-ONSET ALZHEIMER'S DISEASE. , 2014, 10, P135-P135.		0
67	O3-05-06: Transethnic genome-wide meta-analysis for Alzheimer disease. , 2015, 11, P230-P230.		О
68	P2â€085: Further Stratification of <i>APOE</i> E4â€Negative Subjects Identifies Novel Genes for Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P641.	0.8	0
69	[P1–242]: GENOMEâ€WIDE ASSOCIATION STUDY OF ALZHEIMER DISEASE ENDOPHENOTYPES AT PRECLINICAL AND MCI STAGES. Alzheimer's and Dementia, 2017, 13, P337.	L _{0.8}	О
70	P2â€113: ALZHEIMER'S DISEASE BIOMARKERS IN VITREOUS OF PATIENTS UNDERGOING VITRECTOMY ARE ASSOCIATED WITH COGNITIVE FUNCTION TESTING AND APOE GENOTYPES. Alzheimer's and Dementia, 2018, 14, P712.	0.8	0
71	Novel mechanism underlying the APOE $\hat{l}\mu 2$ protective effect for Alzheimer disease implicated by integrative genome and transcriptome analysis. Alzheimer's and Dementia, 2020, 16, e040065.	0.8	О
72	Differential effects of apolipoprotein E on the molecular and cellular phenotypes associated with Alzheimer's disease in isogenic human iPSCâ€derived neurons. Alzheimer's and Dementia, 2020, 16, e044579.	0.8	0

#	Article	IF	CITATIONS
73	Mechanism for the protective effect of APOE $\hat{l}\mu 2$ against Alzheimer disease is linked to tau and the classical complement pathway. Alzheimer's and Dementia, 2020, 16, e044881.	0.8	O
74	Multivariate analysis of blood and brain transcriptome in Alzheimer's reveals unique APOE $\hat{l}\mu$ 4-related immune pathways Alzheimer's and Dementia, 2021, 17 Suppl 3, e054237.	0.8	0
75	Domain specific cognitive functions predict neuropathological traits in the Framingham Heart Study Alzheimer's and Dementia, 2021, 17 Suppl 3, e054249.	0.8	O
76	Genome-wide association and multi-omics studies identify MGMT as a novel risk gene for Alzheimer disease among women Alzheimer's and Dementia, 2021, 17 Suppl 3, e054483.	0.8	0