Alessandro ChiadÃ²

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942500/publications.pdf Version: 2024-02-01

Διεςςανόρο Ομιαόδ2

#	Article	IF	CITATIONS
1	Bi2O3 immobilized 3D structured clay filters for solar photocatalytic treatment of wastewater from batch to scaleup reactors. Materials Chemistry and Physics, 2022, 276, 125297.	2.0	6
2	Functional 3D printing: Approaches and bioapplications. Biosensors and Bioelectronics, 2021, 175, 112849.	5.3	83
3	Combined photocatalytic degradation of pollutants and inactivation of waterborne pathogens using solar light active α/β-Bi2O3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126214.	2.3	7
4	Rational engineering of the lccl ² T. versicolor laccase for the mediator-less oxidation of large polycyclic aromatic hydrocarbons. Computational and Structural Biotechnology Journal, 2021, 19, 2213-2222.	1.9	16
5	Bi ₂ O ₃ /nylon multilayered nanocomposite membrane for the photocatalytic inactivation of waterborne pathogens and degradation of mixed organic pollutants. Environmental Science: Nano, 2021, 8, 342-355.	2.2	7
6	Real-Time Monitoring of the In Situ Microfluidic Synthesis of Ag Nanoparticles on Solid Substrate for Reliable SERS Detection. Biosensors, 2021, 11, 520.	2.3	2
7	Photofabrication of polymeric biomicrofluidics: New insights into material selection. Materials Science and Engineering C, 2020, 106, 110166.	3.8	5
8	A modular 3D printed lab-on-a-chip for early cancer detection. Lab on A Chip, 2020, 20, 665-674.	3.1	44
9	Advanced ELISA-like Biosensing Based on Ultralarge-Pore Silica Microbeads. ACS Applied Bio Materials, 2020, 3, 5787-5795.	2.3	5
10	Graphenic Aerogels Decorated with Ag Nanoparticles as 3D SERS Substrates for Biosensing. Particle and Particle Systems Characterization, 2020, 37, 2000095.	1.2	9
11	Electrospun Nanofibers: from Food to Energy by Engineered Electrodes in Microbial Fuel Cells. Nanomaterials, 2020, 10, 523.	1.9	21
12	Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Analytical Chemistry, 2020, 92, 4053-4064.	3.2	50
13	Laserâ€Triggered Writing and Biofunctionalization of Thiolâ€Ene Networks. Macromolecular Rapid Communications, 2020, 41, e2000084.	2.0	7
14	Cysteine-mediated synthesis of silver nanonets and their use for Surface Enhanced Raman Scattering (SERS). Materials Letters, 2019, 247, 208-210.	1.3	4
15	Monolithic glass suspended microchannel resonators for enhanced mass sensing of liquids. Sensors and Actuators B: Chemical, 2019, 283, 298-303.	4.0	22
16	Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. Biosensors, 2018, 8, 131.	2.3	16
17	Functionalized ZnO nanowires for microcantilever biosensors with enhanced binding capability. Analytical and Bioanalytical Chemistry, 2017, 409, 2615-2625.	1.9	12
18	SERS-active metal-dielectric nanostructures integrated in microfluidic devices for label-free quantitative detection of miRNA. Faraday Discussions, 2017, 205, 271-289.	1.6	39

Alessandro Chiad \tilde{A}^2

#	Article	IF	CITATIONS
19	Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications. ACS Applied Materials & Interfaces, 2017, 9, 19193-19201.	4.0	55
20	SERS-active Metal-dielectric Nanostructures Integrated in Microfluidic Devices for Ultra-sensitive Label-free miRNA Detection. Procedia Technology, 2017, 27, 37-38.	1.1	0
21	Graphene-Metal Nanostructures as Surface Enhanced Raman Scattering Substrates for Biosensing. Procedia Technology, 2017, 27, 236-237.	1.1	Ο
22	Experimental evidence of Fano resonances in nanomechanical resonators. Scientific Reports, 2017, 7, 1065.	1.6	25
23	Succinic anhydride functionalized microcantilevers for protein immobilization and quantification. Analytical and Bioanalytical Chemistry, 2016, 408, 7917-7926.	1.9	12
24	Optimization and characterization of a homogeneous carboxylic surface functionalization for silicon-based biosensing. Colloids and Surfaces B: Biointerfaces, 2016, 143, 252-259.	2.5	20
25	Immobilization of Oligonucleotides on Metal-Dielectric Nanostructures for miRNA Detection. Analytical Chemistry, 2016, 88, 9554-9563.	3.2	41
26	SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency. Journal of Physical Chemistry C, 2016, 120, 16946-16953.	1.5	57
27	Surface-enhanced Raman spectroscopy on porous silicon membranes decorated with Ag nanoparticles integrated in elastomeric microfluidic chips. RSC Advances, 2016, 6, 21865-21870.	1.7	32
28	Ultrasensitive Ag-coated TiO ₂ nanotube arrays for flexible SERS-based optofluidic devices. Journal of Materials Chemistry C, 2015, 3, 6868-6875.	2.7	54
29	Enhanced fluorescence detection of miRNA-16 on a photonic crystal. Analyst, The, 2015, 140, 5459-5463.	1.7	31
30	Rational Modification of Estrogen Receptor by Combination of Computational and Experimental Analysis. PLoS ONE, 2014, 9, e102658.	1.1	8
31	Opening Study on the Development of a New Biosensor for Metal Toxicity Based on Pseudomonas fluorescens Pyoverdine. Biosensors, 2013, 3, 385-399.	2.3	20