Didier Jean

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/394240/publications.pdf Version: 2024-02-01

DIDIED IEAN

#	Article	IF	CITATIONS
1	KRAS signaling in malignant pleural mesothelioma. EMBO Molecular Medicine, 2022, 14, e13631.	3.3	12
2	A Community-Driven, Openly Accessible Molecular Pathway Integrating Knowledge on Malignant Pleural Mesothelioma. Frontiers in Oncology, 2022, 12, 849640.	1.3	4
3	Asbestos and Mesothelioma: What Is Recent Advance in Research on Asbestos-Induced Molecular Carcinogenesis?. Respiratory Disease Series, 2021, , 17-31.	0.1	1
4	Multi-site tumor sampling highlights molecular intra-tumor heterogeneity in malignant pleural mesothelioma. Genome Medicine, 2021, 13, 113.	3.6	31
5	Abstract 3128: Spatial intra-tumor molecular heterogeneity in malignant pleural mesothelioma. , 2021, ,		0
6	Frequent Homozygous Deletions of Type I Interferon Genes in Pleural Mesothelioma Confer Sensitivity to Oncolytic Measles Virus. Journal of Thoracic Oncology, 2020, 15, 827-842.	0.5	44
7	Reply to: Oncolytic Viral Therapy for Malignant Pleural Mesothelioma. Journal of Thoracic Oncology, 2020, 15, e113-e116.	0.5	2
8	Involvement of the M-CSF/IL-34/CSF-1R pathway in malignant pleural mesothelioma. , 2020, 8, e000182.		32
9	Genetic alterations of malignant pleural mesothelioma: associationÂwith tumor heterogeneity and overall survival. Molecular Oncology, 2020, 14, 1207-1223.	2.1	74
10	Combined MEK and PI3K/p110β Inhibition as a Novel Targeted Therapy for Malignant Mesothelioma Displaying Sarcomatoid Features. Cancer Research, 2020, 80, 843-856.	0.4	19
11	The Biology of Malignant Mesothelioma and the Relevance of Preclinical Models. Frontiers in Oncology, 2020, 10, 388.	1.3	25
12	Malignant Mesothelioma: Mechanism of Carcinogenesis. , 2020, , 343-362.		2
13	Abstract B14: Discovery of YAP-TEAD protein-protein interaction inhibitors (PPI) for treating malignant pleural mesothelioma (MPM). Molecular Cancer Research, 2020, 18, B14-B14.	1.5	1
14	Unraveling the cellular heterogeneity of malignant pleural mesothelioma through a deconvolution approach. Molecular and Cellular Oncology, 2019, 6, 1610322.	0.3	8
15	Dissecting heterogeneity in malignant pleural mesothelioma through histo-molecular gradients for clinical applications. Nature Communications, 2019, 10, 1333.	5.8	125
16	ES17.02 Molecular Heterogeneity. Journal of Thoracic Oncology, 2019, 14, S56.	0.5	0
17	Brain-derived neurotrophic factor, a new soluble biomarker for malignant pleural mesothelioma involved in angiogenesis. Molecular Cancer, 2018, 17, 148.	7.9	8
18	Assessment of signaling pathway inhibitors and identification of predictive biomarkers in malignant pleural mesothelioma. Lung Cancer, 2018, 126, 15-24.	0.9	13

DIDIER JEAN

#	Article	IF	CITATIONS
19	Mesotheliomas in Genetically Engineered Mice Unravel Mechanism of Mesothelial Carcinogenesis. International Journal of Molecular Sciences, 2018, 19, 2191.	1.8	10
20	Co-occurring Mutations of Tumor Suppressor Genes, <i>LATS2</i> and <i>NF2</i> , in Malignant Pleural Mesothelioma. Clinical Cancer Research, 2017, 23, 3191-3202.	3.2	67
21	Modulating BAP1 expression affects ROS homeostasis, cell motility and mitochondrial function. Oncotarget, 2017, 8, 72513-72527.	0.8	24
22	Five years update on relationships between malignant pleural mesothelioma and exposure to asbestos and other elongated mineral particles. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2016, 19, 151-172.	2.9	41
23	Biomolecular Pathways and Malignant Pleural Mesothelioma. , 2016, , 169-192.		4
24	Abstract 3666: Co-occurring mutations of tumors suppressor genes, NF2 and LATS2, in malignant pleural mesothelioma. , 2016, , .		0
25	Abstract 112: Genetic alterations in molecular tumor subgroups of malignant pleural mesothelioma. , 2016, , .		1
26	Causes and pathophysiology of malignant pleural mesothelioma. Lung Cancer Management, 2015, 4, 219-229.	1.5	9
27	Thoracic Neoplasia–Mesothelioma. , 2014, , 2690-2700.		0
28	Molecular Classification of Malignant Pleural Mesothelioma: Identification of a Poor Prognosis Subgroup Linked to the Epithelial-to-Mesenchymal Transition. Clinical Cancer Research, 2014, 20, 1323-1334.	3.2	121
29	Overexpression and promoter mutation of the TERT gene in malignant pleural mesothelioma. Oncogene, 2014, 33, 3748-3752.	2.6	68
30	Malignant Mesothelioma: Mechanism of Carcinogenesis. , 2014, , 299-319.		2
31	Differential mutation profiles and similar intronic TP53 polymorphisms in asbestos-related lung cancer and pleural mesothelioma. Mutagenesis, 2013, 28, 323-331.	1.0	35
32	Molecular Changes in Mesothelioma With an Impact on Prognosis and Treatment. Archives of Pathology and Laboratory Medicine, 2012, 136, 277-293.	1.2	87
33	Syntenic Relationships between Genomic Profiles of Fiber-Induced Murine and Human Malignant Mesothelioma. American Journal of Pathology, 2011, 178, 881-894.	1.9	48
34	Downâ€regulation of the expression of RB18A/MED1, a cofactor of transcription, triggers strong tumorigenic phenotype of human melanoma cells. International Journal of Cancer, 2009, 124, 2597-2606.	2.3	43
35	Intratumoral gene delivery of anti-cathepsin L single-chain variable fragment by lentiviral vector inhibits tumor progression induced by human melanoma cells. Cancer Gene Therapy, 2008, 15, 591-604.	2.2	21
36	Cathepsin L expression is up-regulated by hypoxia in human melanoma cells: role of its 5′-untranslated region. Biochemical Journal, 2008, 413, 125-134.	1.7	23

DIDIER JEAN

#	Article	IF	CITATIONS
37	Expression of anti-cathepsin L ScFv inhibites secretion of procathepsin L, a cysteine proteinase which cleaves human C3, the third component of complement and metastatic phenotype of human melanoma cells. Molecular Immunology, 2007, 44, 3950.	1.0	0
38	Expression of cathepsin L in human tumor cells is under the control of distinct regulatory mechanisms. Oncogene, 2006, 25, 1474-1484.	2.6	27
39	Activation of Epstein–Barr virus/C3d receptor (gp140, CR2, CD21) on human B lymphoma cell surface triggers Cbl tyrosine phosphorylation, its association with p85 subunit, Crk-L and Syk and its dissociation with Vav. Cellular Signalling, 2006, 18, 1219-1225.	1.7	11
40	Infection of human B lymphoma cells byMycoplasma fermentansinduces interaction of its elongation factor with the intracytoplasmic domain of Epstein-Barr virus receptor (gp140, EBV/C3dR, CR2, CD21). FEMS Microbiology Letters, 2005, 249, 359-366.	0.7	5
41	Inhibition of Tumorigenicity and Metastasis of Human Melanoma Cells by Anti-Cathepsin L Single Chain Variable Fragment. Cancer Research, 2004, 64, 146-151.	0.4	86
42	Construction and expression of intracellular anti-ATF-1 single chain Fv fragment: a modality to inhibit melanoma tumor growth and metastasis. Methods, 2004, 34, 233-239.	1.9	2
43	Characterization of human cathepsin L promoter and identification of binding sites for NF-Y, Sp1 and Sp3 that are essential for its activity. Biochemical Journal, 2002, 361, 173.	1.7	20
44	Cloning and characterization of anti-cathepsin L single chain variable fragment whose expression inhibits procathepsin L secretion in human melanoma cells. Biochemical Journal, 2002, 367, 219-227.	1.7	34
45	Characterization of human cathepsin L promoter and identification of binding sites for NF-Y, Sp1 and Sp3 that are essential for its activity. Biochemical Journal, 2002, 361, 173-184.	1.7	41
46	Targeting the ATF-1/CREB Transcription Factors by Single Chain Fv Fragment in Human Melanoma: Potential Modality for Cancer Therapy. Critical Reviews in Immunology, 2001, 21, 12.	1.0	28
47	Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene, 2000, 19, 2721-2730.	2.6	68
48	Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. , 2000, 212, 19-28.		66
49	Regulation of tumor growth and metastasis of human melanoma by the CREB transcription factor family. , 2000, , 19-28.		21
50	Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO Journal, 1998, 17, 4358-4369.	3.5	224
51	α1-Proteinase inhibitor is the serum regulator of the activity of p57, a C3-cleaving proteinase present in human erythrocyte membranes. Biochimica Et Biophysica Acta - Molecular Cell Research, 1998, 1402, 131-138.	1.9	1
52	Loss of AP-2 Results in Up-regulation ofMCAM/MUC18 and an Increase in Tumor Growth and Metastasis of Human Melanoma Cells. Journal of Biological Chemistry, 1998, 273, 16501-16508.	1.6	141
53	CREB and Its Associated Proteins Act as Survival Factors for Human Melanoma Cells. Journal of Biological Chemistry, 1998, 273, 24884-24890.	1.6	147
54	Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene, 1997, 15, 2069-2075.	2.6	118

#	Article	IF	CITATIONS
55	Co-expression and secretion of C3, the third component of complement and a C3-cleaving cysteine proteinase in a highly metastatic human melanoma cell line. Immunology Letters, 1997, 58, 107-112.	1.1	12
56	Identification on melanoma cells of p39, a cysteine proteinase that cleaves C3, the third component of complement: amino-acid-sequence identities with procathepsin L. Biochemical Journal, 1995, 312, 961-969.	1.7	28