
Piotr Czub

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/394218/publications.pdf Version: 2024-02-01

DIOTE CZUR

#	Article	IF	CITATIONS
1	Rheological Analysis of the Synthesis of High-Molecular-Weight Epoxy Resins from Modified Soybean Oil and Bisphenol A or BPA-Based Epoxy Resins. Materials, 2021, 14, 6770.	2.9	3
2	Flame Retardancy of Biobased Composites—Research Development. Materials, 2020, 13, 5253.	2.9	31
3	Synthesis of High-Molecular Weight Biobased Epoxy Resins: Determination of the Course of the Process by MALDI-TOF Mass Spectrometry. ACS Sustainable Chemistry and Engineering, 2018, 6, 6084-6093.	6.7	9
4	The unique activity of catalyst in the epoxidation of soybean oil and following reaction of epoxidized product with bisphenol A. Industrial Crops and Products, 2016, 83, 755-773.	5.2	32
5	Study on mechanical properties of the crosslinked with isocyanates product of the reaction of modified soybean oil with epoxy resin. Polimery, 2014, 59, 466-476.	0.7	4
6	Epoxy resins modified with palm oil derivatives — preparation and properties. Polimery, 2013, 58, 135-139.	0.7	16
7	A Comparison of the Syntheses of High Molar Mass Epoxy Resins on the Basis of two Groups of Modified Vegetable Oils. Macromolecular Symposia, 2009, 277, 162-170.	0.7	13
8	Synthesis and modification of epoxy resins using recycled poly(ethylene terephthalate). Polymers for Advanced Technologies, 2009, 20, 183-193.	3.2	22
9	Synthesis of highâ€molecularâ€weight epoxy resins from modified natural oils and Bisphenol A or BisphenolAâ€based epoxy resins. Polymers for Advanced Technologies, 2009, 20, 194-208.	3.2	52
10	Epoxy-carbazole compositions. Synthetic Metals, 2008, 158, 826-830.	3.9	4
11	Epoxy compositions with use of modified vegetable oils. Polimery, 2008, 53, 182-189.	0.7	5
12	Characterization of an Epoxy Resin Modified with Natural Oil-Based Reactive Diluents. Macromolecular Symposia, 2006, 245-246, 533-538.	0.7	28
13	Application of Modified Natural Oils as Reactive Diluents for Epoxy Resins. Macromolecular Symposia, 2006, 242, 60-64.	0.7	55
14	Application of epoxidized soybean oil for the control of viscosity of epoxy compositions. Polimery, 2006, 51, 821-828.	0.7	4
15	Unsaturated Polyester Resins: Chemistry and Technology. Advances in Polymer Science, 2005, , 1-95.	0.8	86
16	Luminescence properties of epoxy resins modified with a carbazole derivative. Macromolecular Symposia, 2004, 212, 269-274.	0.7	11
17	Cure Schedule of Epoxides and Their Sulfur-Containing Derivatives. Kinetic Study. Polymer Journal, 2001, 33, 662.	2.7	2
18	Characterization of the cure of some epoxides and their sulphur-containing analogues with hexahydrophthalic anhydride by DSC and TGA. Journal of Applied Polymer Science, 1998, 69, 451-460.	2.6	8

PIOTR CZUB

#	Article	IF	CITATIONS
19	Application of phase transfer catalysis in the synthesis of low-molecular-weight epoxy resins. Angewandte Makromolekulare Chemie, 1997, 251, 1-12.	0.2	6
20	A Modified Synthesis of 9-(1,2-Dichlorovinyl)carbazole by Using Crown Ethers and Cryptands in a Non-aqueous System. Synthetic Communications, 1995, 25, 3647-3654.	2.1	5
21	REACTIONS OF DICHLOROACETYLENE WITH PRIMARY ALIPHATIC AMINES. Bulletin Des Sociétés Chimiques Belges, 1995, 104, 407-409.	0.0	1
22	Application of modified polystyrenes as phase transfer catalysts. Polimery, 1994, 39, 538-542.	0.7	2