
Quan-Fu He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3942008/publications.pdf Version: 2024-02-01

Ομανι-Είι Ηε

#	Article	IF	CITATIONS
1	Observational Insights into Isoprene Secondary Organic Aerosol Formation through the Epoxide Pathway at Three Urban Sites from Northern to Southern China. Environmental Science & Technology, 2022, , .	4.6	6
2	Molecular Analysis of Secondary Brown Carbon Produced from the Photooxidation of Naphthalene. Environmental Science & Technology, 2022, 56, 3340-3353.	4.6	22
3	Optical Properties of Secondary Organic Aerosol Produced by Photooxidation of Naphthalene under NOx Condition. Environmental Science & Technology, 2022, 56, 4816-4827.	4.6	20
4	Evolution of light absorption properties during photochemical aging of straw open burning aerosols. Science of the Total Environment, 2022, 838, 156431.	3.9	4
5	Chemical composition and morphological analysis of atmospheric particles from an intensive bonfire burning festival. Environmental Science Atmospheres, 2022, 2, 616-633.	0.9	1
6	Chemical Composition and Molecular-Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning. Environmental Science & Technology, 2021, 55, 2511-2521.	4.6	58
7	Optical Properties of Secondary Organic Aerosol Produced by Nitrate Radical Oxidation of Biogenic Volatile Organic Compounds. Environmental Science & Technology, 2021, 55, 2878-2889.	4.6	35
8	Secondary organic aerosols produced from photochemical oxidation of secondarily evaporated biomass burning organic gases: Chemical composition, toxicity, optical properties, and climate effect. Environment International, 2021, 157, 106801.	4.8	11
9	Scattering and absorption cross sections of atmospheric gases in the ultraviolet–visible wavelength range (307–725 nm). Atmospheric Chemistry and Physics, 2021, 21, 14927-14940.	1.9	13
10	Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO ₃ Radical Reactions. Environmental Science & Technology, 2020, 54, 1395-1405.	4.6	96
11	Laboratory Insights into the Diel Cycle of Optical and Chemical Transformations of Biomass Burning Brown Carbon Aerosols. Environmental Science & Technology, 2020, 54, 11827-11837.	4.6	28
12	Mechanisms of lung toxicity induced by biomass burning aerosols. Particle and Fibre Toxicology, 2020, 17, 4.	2.8	39
13	Nationwide increase of polycyclic aromatic hydrocarbons in ultrafine particles during winter over China revealed by size-segregated measurements. Atmospheric Chemistry and Physics, 2020, 20, 14581-14595.	1.9	19
14	Connecting the Oxidative Potential of Secondary Organic Aerosols with Reactive Oxygen Species in Exposed Lung Cells. Environmental Science & Technology, 2019, 53, 13949-13958.	4.6	55
15	Dynamic changes in optical and chemical properties of tar ball aerosols by atmospheric photochemical aging. Atmospheric Chemistry and Physics, 2019, 19, 139-163.	1.9	81
16	Evolution of the Complex Refractive Index of Secondary Organic Aerosols during Atmospheric Aging. Environmental Science & Technology, 2018, 52, 3456-3465.	4.6	40
17	Secondary Organic Aerosol Formation From Isoprene Epoxides in the Pearl River Delta, South China: IEPOX―and HMMLâ€Đerived Tracers. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6999-7012.	1.2	27
18	Exposure of Lung Epithelial Cells to Photochemically Aged Secondary Organic Aerosol Shows Increased Toxic Effects. Environmental Science and Technology Letters, 2018, 5, 424-430.	3.9	83

Quan-Fu He

#	Article	IF	CITATIONS
19	Effect of traffic restriction on reducing ambient volatile organic compounds (VOCs): Observation-based evaluation during a traffic restriction drill in Guangzhou, China. Atmospheric Environment, 2017, 161, 61-70.	1.9	25
20	Significant Increase of Aromatics-Derived Secondary Organic Aerosol during Fall to Winter in China. Environmental Science & Technology, 2017, 51, 7432-7441.	4.6	52
21	Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China. Science of the Total Environment, 2017, 593-594, 462-469.	3.9	53
22	Secondary organic aerosol formation from photo-oxidation of toluene with NO x and SO 2 : Chamber simulation with purified air versus urban ambient air as matrix. Atmospheric Environment, 2017, 150, 67-76.	1.9	36
23	Calibration of a multi-pass photoacoustic spectrometer cell using light-absorbing aerosols. Atmospheric Measurement Techniques, 2017, 10, 1203-1213.	1.2	37
24	Spatial and seasonal variations of secondary organic aerosol from terpenoids over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,661.	1.2	29
25	Changes in visibility with PM2.5 composition and relative humidity at a background site in the Pearl River Delta region. Journal of Environmental Sciences, 2016, 40, 10-19.	3.2	53
26	Attributing risk burden of PM2.5-bound polycyclic aromatic hydrocarbons to major emission sources: Case study in Guangzhou, south China. Atmospheric Environment, 2016, 142, 313-323.	1.9	44
27	The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers. Atmospheric Environment, 2016, 144, 60-68.	1.9	29
28	Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter. Scientific Reports, 2016, 6, 20411.	1.6	49
29	Formation of secondary aerosols from gasoline vehicle exhaust when mixing with SO ₂ . Atmospheric Chemistry and Physics, 2016, 16, 675-689.	1.9	70
30	On-road vehicle emissions of glyoxal and methylglyoxal from tunnel tests in urban Guangzhou, China. Atmospheric Environment, 2016, 127, 55-60.	1.9	38
31	Seasonal variation of secondary organic aerosol tracers in Central Tibetan Plateau. Atmospheric Chemistry and Physics, 2015, 15, 8781-8793.	1.9	68
32	Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmospheric Chemistry and Physics, 2015, 15, 9049-9062.	1.9	90
33	PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007–2012. Journal of Hazardous Materials, 2015, 286, 484-492.	6.5	35
34	Composition profiles of organic aerosols from Chinese residential cooking: case study in urban Guangzhou, south China. Journal of Atmospheric Chemistry, 2015, 72, 1-18.	1.4	65
35	Source apportionment of atmospheric PAHs and their toxicity using PMF: Impact of gas/particle partitioning. Atmospheric Environment, 2015, 103, 114-120.	1.9	65
36	Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmospheric Measurement Techniques, 2014, 7, 301-313.	1.2	89

Quan-Fu He

#	Article	IF	CITATIONS
37	Source Apportionment Using Radiocarbon and Organic Tracers for PM _{2.5} Carbonaceous Aerosols in Guangzhou, South China: Contrasting Local- and Regional-Scale Haze Events. Environmental Science & Technology, 2014, 48, 12002-12011.	4.6	132
38	Organosulfates from Pinene and Isoprene over the Pearl River Delta, South China: Seasonal Variation and Implication in Formation Mechanisms. Environmental Science & Technology, 2014, 48, 9236-9245.	4.6	89
39	Trends of ambient fine particles and major chemical components in the Pearl River Delta region: Observation at a regional background site in fall and winter. Science of the Total Environment, 2014, 497-498, 274-281.	3.9	44
40	Spatial distributions of secondary organic aerosols from isoprene, monoterpenes, <i>β</i> -caryophyllene, and aromatics over China during summer. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,877-11,891.	1.2	91
41	Compositions and sources of organic acids in fine particles (PM2.5) over the Pearl River Delta region, south China. Journal of Environmental Sciences, 2014, 26, 110-121.	3.2	48
42	Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region. Journal of Hazardous Materials, 2013, 250-251, 403-411.	6.5	120
43	Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic. Scientific Reports, 2013, 3, 2280.	1.6	98
44	Tracerâ€based estimation of secondary organic carbon in the Pearl River Delta, south China. Journal of Geophysical Research, 2012, 117, .	3.3	149
45	Aerosol scattering coefficients and major chemical compositions of fine particles observed at a rural site in the central Pearl River Delta, South China. Journal of Environmental Sciences, 2012, 24, 72-77.	3.2	69
46	Roadside and rooftop measurements of polycyclic aromatic hydrocarbons in PM2.5 in urban Guangzhou: Evaluation of vehicular and regional combustion source contributions. Atmospheric Environment, 2011, 45, 7184-7191.	1.9	53