Chaozhong Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3941911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	S, N co-doped carbon nanotubes coupled with CoFe nanoparticles as an efficient bifunctional ORR/OER electrocatalyst for rechargeable Zn-air batteries. Chemical Engineering Journal, 2022, 429, 132174.	6.6	60
2	Enhanced bifunctional catalytic performance of nitrogen-doped carbon composite to oxygen reduction and evolution reactions with the regulation of graphene for rechargeable Znâ€air batteries. Applied Surface Science, 2022, 575, 151730.	3.1	13
3	Positive regulation of active sites for oxygen evolution reactions by encapsulating NiFe ₂ O ₄ nanoparticles in N-doped carbon nanotubes <i>in situ</i> to construct efficient bifunctional oxygen catalysts for rechargeable Zn–air batteries. Journal of Materials Chemistry A. 2022. 10. 5305-5316.	5.2	16
4	Double-Activator Modulation of Ultrahigh Surface Areas on Doped Carbon Catalysts Boosts the Primary Zn–Air Battery Performance. ACS Applied Energy Materials, 2022, 5, 1701-1709.	2.5	12
5	Highly accessible single Mn-N3 sites-enriched porous graphene structure via a confined thermal-erosion strategy for catalysis of oxygen reduction. Chemical Engineering Journal, 2022, 440, 135850.	6.6	28
6	Promoting oxygen reduction <i>via</i> crafting bridge-bonded oxygen ligands on a single-atom iron catalyst. Inorganic Chemistry Frontiers, 2022, 9, 3306-3318.	3.0	14
7	Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Materials, 2022, 51, 149-158.	9.5	34
8	Biomass coffee grounds derived nitrogen-doped ultrafine carbon nanoparticles as an efficient electrocatalyst to oxygen reduction reaction. Journal of Alloys and Compounds, 2022, 920, 165895.	2.8	5
9	Two-step pyrolytic engineering to form porous nitrogen-rich carbons with a 3D network structure for Zn-air battery oxygen reduction electrocatalysis. International Journal of Hydrogen Energy, 2021, 46, 2117-2127.	3.8	11
10	Fe, N-doped graphene-wrapped carbon black nanoparticles as highly efficient catalyst towards oxygen reduction reaction. Applied Surface Science, 2021, 545, 148981.	3.1	16
11	Progress of carbon-based electrocatalysts for flexible zinc-air batteries in the past 5Âyears: recent strategies for design, synthesis and performance optimization. Nanoscale Research Letters, 2021, 16, 92.	3.1	21
12	Molecule-confined modification of graphitic C3N4 to design mesopore-dominated Fe-N-C hybrid electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 30355-30365.	3.8	14
13	Hierarchical cobalt-nitrogen-doped carbon composite as efficiently bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. Journal of Alloys and Compounds, 2021, 878, 160349.	2.8	15
14	Boosting oxygen reduction catalysis with tailorable active-N-dominated doped defective CNTs. Applied Surface Science, 2020, 499, 143844.	3.1	12
15	La-doped V2O5·nH2O@OAB and flexible Fe2O3@rGO as binder-free thin film electrodes for asymmetric supercapacitors. Chemical Engineering Journal, 2020, 389, 123534.	6.6	46
16	Constructing flexible and self-standing electrocatalyst for oxygen reduction reaction by in situ doping nitrogen atoms into carbon cloth. Applied Surface Science, 2020, 523, 146424.	3.1	7
17	Molten-salt/oxalate mediating Fe and N-doped mesoporous carbon sheet nanostructures towards highly efficient and durable oxygen reduction electrocatalysis. Microporous and Mesoporous Materials, 2020, 303, 110281.	2.2	16
18	Boosting the primary Zn–air battery oxygen reduction performance with mesopore-dominated semi-tubular doped-carbon nanostructures. Journal of Materials Chemistry A, 2020, 8, 9832-9842.	5.2	24

CHAOZHONG GUO

#	Article	IF	CITATIONS
19	Nanochannel-Controlled Synthesis of Ultrahigh Nitrogen-Doping Efficiency on Mesoporous Fe/N/C Catalysts for Oxygen Reduction Reaction. Nanoscale Research Letters, 2020, 15, 21.	3.1	9
20	High active-site availability on Fe–N–C oxygen reduction electrocatalysts derived from iron(II) complexes of phenanthroline with a K2C2O4 promoter. Journal of Alloys and Compounds, 2019, 809, 151822.	2.8	9
21	AÂHighly Nanoporous Nitrogen-Doped Carbon Microfiber Derived from Bioresource as a New Kind of ORR Electrocatalyst. Nanoscale Research Letters, 2019, 14, 22.	3.1	17
22	Graphdiyne-Based One-Step DNA Fluorescent Sensing Platform for the Detection of <i>Mycobacterium tuberculosis</i> and Its Drug-Resistant Genes. ACS Applied Materials & Interfaces, 2019, 11, 35622-35629.	4.0	38
23	Rational Construction of V ₂ O ₅ @rGO with Enhanced Pseudocapacitive Storage for Highâ€Performance Flexible Energy Storage Device. ChemElectroChem, 2019, 6, 5845-5855.	1.7	9
24	An Ultrasonication-Assisted Cobalt Hydroxide Composite with Enhanced Electrocatalytic Activity toward Oxygen Evolution Reaction. Materials, 2018, 11, 1912.	1.3	14
25	Boosting the oxygen reduction activity of a three-dimensional network Co–N–C electrocatalyst <i>via</i> space-confined control of nitrogen-doping efficiency and the molecular-level coordination effect. Journal of Materials Chemistry A, 2018, 6, 13050-13061.	5.2	74
26	The Oxygen Reduction Electrocatalytic Activity of Cobalt and Nitrogen Co-doped Carbon Nanocatalyst Synthesized by a Flat Template. Nanoscale Research Letters, 2017, 12, 144.	3.1	30
27	Pyrolysis-induced synthesis of iron and nitrogen-containing carbon nanolayers modified graphdiyne nanostructure as a promising core-shell electrocatalyst for oxygen reduction reaction. Carbon, 2017, 119, 201-210.	5.4	99
28	Protein-enriched fish "biowaste―converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochimica Acta, 2017, 236, 228-238.	2.6	70
29	Building three-dimensional porous nano-network for the improvement of iron and nitrogen-doped carbon oxygen reductionÂelectrocatalyst. Carbon, 2017, 125, 640-648.	5.4	47
30	Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction. Nanoscale Research Letters, 2017, 12, 595.	3.1	8
31	Surface Modification of Multi-Walled Carbon Nanotubes via Hemoglobin-Derived Iron and Nitrogen-Rich Carbon Nanolayers for the Electrocatalysis of Oxygen Reduction. Materials, 2017, 10, 564.	1.3	14
32	The Use of an Edible Mushroom-Derived Renewable Carbon Material as a Highly Stable Electrocatalyst towards Four-Electron Oxygen Reduction. Materials, 2016, 9, 1.	1.3	571
33	Coprinus comatus-derived nitrogen-containing biocarbon electrocatalyst with the addition of self-generating graphene-like support for superior oxygen reduction reaction. Science Bulletin, 2016, 61, 948-958.	4.3	25
34	Enhancement of photovoltaic performance by two-step dissolution processed photoactive blend in polymer solar cells. Science China Materials, 2016, 59, 842-850.	3.5	6
35	A graphene-based electrocatalyst co-doped with nitrogen and cobalt for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 20494-20501.	3.8	21
36	A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass. Nanoscale Research Letters, 2016, 11, 268.	3.1	20

Chaozhong Guo

#	Article	IF	CITATIONS
37	Template-assisted conversion of aniline nanopolymers into non-precious metal FeN/C electrocatalysts for highly efficient oxygen reduction reaction. Journal of Alloys and Compounds, 2016, 686, 874-882.	2.8	29
38	Inexpensive Ipomoea aquatica Biomass-Modified Carbon Black as an Active Pt-Free Electrocatalyst for Oxygen Reduction Reaction in an Alkaline Medium. Materials, 2015, 8, 6658-6667.	1.3	9
39	The use of cheap polyaniline and melamine co-modified carbon nanotubes as active and stable catalysts for oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2015, 160, 357-362.	2.6	25
40	Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium. Carbon, 2015, 85, 279-288.	5.4	91
41	High content of pyridinic- and pyrrolic-nitrogen-modified carbon nanotubes derived from blood biomass for the electrocatalysis of oxygen reduction reaction in alkaline medium. Electrochimica Acta, 2015, 168, 386-393.	2.6	50
42	Easy conversion of protein-rich enoki mushroom biomass to a nitrogen-doped carbon nanomaterial as a promising metal-free catalyst for oxygen reduction reaction. Nanoscale, 2015, 7, 15990-15998.	2.8	149
43	Research progress of voltage delay in magnesium battery. Science Bulletin, 2014, 59, 1936-1941.	1.7	10
44	Fe/N/C catalysts derived from blood protein and their electrocatalytic activity towards the oxygen reduction reaction in acidic solution. Chinese Science Bulletin, 2014, 59, 3424-3429.	0.4	7
45	The structural changes of blood pyropolymers and their beneficial electrocatalytic activity toward oxygen reduction. Science Bulletin, 2013, 58, 3698-3703.	1.7	8
46	Electrochemical behavior and analytical detection of insulin on pretreated nanocarbon black electrode surface. Analytical Methods, 2012, 4, 1377.	1.3	20