Michael H Sieweke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3941611/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-term culture-expanded alveolar macrophages restore their full epigenetic identity after transfer in vivo. Nature Immunology, 2022, 23, 458-468.	14.5	35
2	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	14.5	274
3	Tissue-resident macrophages in omentum promote metastatic spread of ovarian cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	189
4	C/EBPβ-Dependent Epigenetic Memory Induces Trained Immunity in Hematopoietic Stem Cells. Cell Stem Cell, 2020, 26, 657-674.e8.	11.1	180
5	ImmGen at 15. Nature Immunology, 2020, 21, 700-703.	14.5	55
6	Bhlhe40 and Bhlhe41 transcription factors regulate alveolar macrophage selfâ€renewal and identity. EMBO Journal, 2019, 38, e101233.	7.8	68
7	Characterization of Mouse Adult Testicular Macrophage Populations by Immunofluorescence Imaging and Flow Cytometry. Bio-protocol, 2019, 9, .	0.4	10
8	Isolation and Long-term Cultivation of Mouse Alveolar Macrophages. Bio-protocol, 2019, 9, .	0.4	40
9	c-Maf controls immune responses by regulating disease-specific gene networks and repressing IL-2 in CD4+ T cells. Nature Immunology, 2018, 19, 497-507.	14.5	118
10	Testicular macrophages: Guardians of fertility. Cellular Immunology, 2018, 330, 120-125.	3.0	72
11	Developmental origin and maintenance of distinct testicular macrophage populations. Journal of Experimental Medicine, 2017, 214, 2829-2841.	8.5	112
12	Trained macrophages support hygiene hypothesis. Nature Immunology, 2017, 18, 1279-1280.	14.5	6
13	SIRT1 regulates macrophage selfâ€renewal. EMBO Journal, 2017, 36, 2353-2372.	7.8	97
14	Eosinophils and mast cells: a lineage apart. Nature Immunology, 2016, 17, 609-611.	14.5	6
15	Efficient CRISPR-mediated mutagenesis in primary immune cells using CrispRGold and a C57BL/6 Cas9 transgenic mouse line. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12514-12519.	7.1	110
16	M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. Journal of Experimental Medicine, 2016, 213, 2269-2279.	8.5	41
17	DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas. Cell, 2016, 167, 1264-1280.e18.	28.9	94
18	Microglia development follows a stepwise program to regulate brain homeostasis. Science, 2016, 353, aad8670.	12.6	911

#	Article	IF	CITATIONS
19	Lineage-specific enhancers activate self-renewal genes in macrophages and embryonic stem cells. Science, 2016, 351, aad5510.	12.6	194
20	Molecular profiling of <scp>CD</scp> 8 T cells in autochthonous melanoma identifies <i>Maf</i> as driver of exhaustion. EMBO Journal, 2015, 34, 2042-2058.	7.8	100
21	Monocytes Compensate Kupffer Cell Loss during Bacterial Infection. Immunity, 2015, 42, 10-12.	14.3	11
22	Waddington's Valleys and Captain Cook's Islands. Cell Stem Cell, 2015, 16, 7-8.	11.1	23
23	M-CSF instructs both cell division and cell identity in HSC through independent transcription factor circuits. Experimental Hematology, 2015, 43, S93.	0.4	0
24	Epigenetic control of myeloid cell differentiation, identity and function. Nature Reviews Immunology, 2015, 15, 7-17.	22.7	292
25	Tissue macrophage identity and selfâ€renewal. Immunological Reviews, 2014, 262, 56-73.	6.0	183
26	Design of a bZip Transcription Factor with Homo/Heterodimer-Induced DNA-Binding Preference. Structure, 2014, 22, 466-477.	3.3	23
27	Progressive replacement of embryo-derived cardiac macrophages with age. Journal of Experimental Medicine, 2014, 211, 2151-2158.	8.5	374
28	Integration of cell cycle control and cell fate choice in M-CSF-instructed myeloid lineage commitment of hematopoietic stem cells. Experimental Hematology, 2014, 42, S16.	0.4	0
29	Transcriptional Control of Macrophage Identity, Self-Renewal, and Function. Advances in Immunology, 2013, 120, 269-300.	2.2	34
30	Beyond Stem Cells: Self-Renewal of Differentiated Macrophages. Science, 2013, 342, 1242974.	12.6	408
31	M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature, 2013, 497, 239-243.	27.8	316
32	Integration of cytokine and transcription factor signals in hematopoietic stem cell commitment. Seminars in Immunology, 2011, 23, 326-334.	5.6	25
33	Characterisation of Genome-Wide PLZF/RARA Target Genes. PLoS ONE, 2011, 6, e24176.	2.5	22
34	Development of Monocytes, Macrophages, and Dendritic Cells. Science, 2010, 327, 656-661.	12.6	2,471
35	Creating a blood line from human skin. Genome Biology, 2010, 11, 143.	9.6	0
36	The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes and Development, 2009, 23, 1195-1206.	5.9	113

#	Article	IF	CITATIONS
37	MafB/c-Maf Deficiency Enables Self-Renewal of Differentiated Functional Macrophages. Science, 2009, 326, 867-871.	12.6	250
38	MafB Restricts M-CSF-Dependent Myeloid Commitment Divisions of Hematopoietic Stem Cells. Cell, 2009, 138, 300-313.	28.9	144
39	Blood Monocytes: Development, Heterogeneity, and Relationship with Dendritic Cells. Annual Review of Immunology, 2009, 27, 669-692.	21.8	1,345
40	Regulation of the transcription factor Ets-1 by DNA-mediated homo-dimerization. EMBO Journal, 2008, 27, 2006-2017.	7.8	56
41	Transcription factor control of central respiratory neuron development. , 2008, , 191-221.		3
42	SUMO Modification Regulates MafB-Driven Macrophage Differentiation by Enabling Myb-Dependent Transcriptional Repression. Molecular and Cellular Biology, 2007, 27, 5554-5564.	2.3	41
43	MafB is required for islet \hat{l}^2 cell maturation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3853-3858.	7.1	223
44	Development of Macrophages with Altered Actin Organization in the Absence of MafB. Molecular and Cellular Biology, 2006, 26, 6808-6818.	2.3	69
45	Balance of MafB and PU.1 specifies alternative macrophage or dendritic cell fate. Blood, 2005, 105, 2707-2716.	1.4	152
46	Mutations of brainstem transcription factors and central respiratory disorders. Trends in Molecular Medicine, 2005, 11, 23-30.	6.7	38
47	C-Myb As A Key Player In The Control Of Myeloid Cell Differentiation. , 2004, , 133-144.		2
48	MafB deficiency causes defective respiratory rhythmogenesis and fatal central apnea at birth. Nature Neuroscience, 2003, 6, 1091-1100.	14.8	154
49	Cooperative Interaction of Hypoxia-inducible Factor-2α (HIF-2α) and Ets-1 in the Transcriptional Activation of Vascular Endothelial Growth Factor Receptor-2 (Flk-1). Journal of Biological Chemistry, 2003, 278, 7520-7530.	3.4	239
50	Deletion of Tachykinin NK1 Receptor Gene in Mice does not Alter Respiratory Network Maturation but Alters Respiratory Responses to Hypoxia Advances in Experimental Medicine and Biology, 2003, 536, 497-504.	1.6	6
51	The murine neurokinin NK1receptor gene contributes to the adult hypoxic facilitation of ventilation. European Journal of Neuroscience, 2002, 16, 2245-2252.	2.6	51
52	Detection of Transcription Factor Partners with a Yeast One Hybrid Screen. , 2000, 130, 59-78.		12
53	MafB is an inducer of monocytic differentiation. EMBO Journal, 2000, 19, 1987-1997.	7.8	231
54	Suppression of HIV Type 1 Replication by a Dominant-Negative Ets-1 Mutant. AIDS Research and Human Retroviruses, 2000, 16, 1981-1989.	1.1	16

#	Article	IF	CITATIONS
55	Mutual activation of Ets-1 and AML1 DNA binding by direct interaction of their autoinhibitory domains. EMBO Journal, 1999, 18, 1609-1620.	7.8	206
56	Regulation of eosinophil-specific gene expression by a C/EBP-Ets complex and GATA-1. EMBO Journal, 1998, 17, 3669-3680.	7.8	107
57	A transcription factor party during blood cell differentiation. Current Opinion in Genetics and Development, 1998, 8, 545-551.	3.3	155
58	Cooperative interaction of Ets-1 with USF-1 required for HIV-1 enhancer activity in T cells. EMBO Journal, 1998, 17, 1728-1739.	7.8	121
59	The expression pattern of the mafB/kr gene in birds and mice reveals that the kreisler phenotype does not represent a null mutant. Mechanisms of Development, 1997, 65, 111-122.	1.7	104
60	MafB Is an Interaction Partner and Repressor of Ets-1 That Inhibits Erythroid Differentiation. Cell, 1996, 85, 49-60.	28.9	283
61	The Tumor-Promoting Effect of Wounding: A Possible Role for TGF-β-Induced Stromal Alterations. Critical Reviews in Oncogenesis, 1994, 5, 297-311.	0.4	96
62	Mediation of wound-related Rous sarcoma virus tumorigenesis by TGF-beta. Science, 1990, 248, 1656-1660.	12.6	207
63	v-src induces clonal sarcomas and rapid metastasis following transduction with a replication-defective retrovirus Proceedings of the National Academy of Sciences of the United States of America. 1989. 86. 10123-10127.	7.1	16