
## Christopher M Haggerty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3940910/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nature Communications, 2020, 11, 163.                                                                                                                       | 5.8  | 466       |
| 2  | Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network.<br>Nature Medicine, 2020, 26, 886-891.                                                                                                                                           | 15.2 | 168       |
| 3  | Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk<br>lie?. European Heart Journal, 2020, 41, 1249-1257.                                                                                                                       | 1.0  | 167       |
| 4  | Association Between Titin Loss-of-Function Variants and Early-Onset Atrial Fibrillation. JAMA - Journal of the American Medical Association, 2018, 320, 2354.                                                                                                                     | 3.8  | 144       |
| 5  | Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify<br>Those at Risk of Atrial Fibrillation–Related Stroke. Circulation, 2021, 143, 1287-1298.                                                                                  | 1.6  | 134       |
| 6  | Predicting Survival From LargeÂEchocardiography and ElectronicÂHealthÂRecord Datasets. JACC:<br>Cardiovascular Imaging, 2019, 12, 681-689.                                                                                                                                        | 2.3  | 101       |
| 7  | Genomics-First Evaluation of Heart Disease Associated With Titin-Truncating Variants. Circulation, 2019, 140, 42-54.                                                                                                                                                              | 1.6  | 97        |
| 8  | Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: A computational fluid dynamics analysis. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1481-1489.                                                                                  | 0.4  | 86        |
| 9  | Analysis of rare genetic variation underlying cardiometabolic diseases and traits among 200,000 individuals in the UK Biobank. Nature Genetics, 2022, 54, 240-250.                                                                                                                | 9.4  | 68        |
| 10 | Cardiac remodeling and dysfunction in childhood obesity: a cardiovascular magnetic resonance<br>study. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 28.                                                                                                                | 1.6  | 62        |
| 11 | Smooth Muscle Cell Deletion of Low-Density Lipoprotein Receptor–Related Protein 1 Augments<br>Angiotensin Il–Induced Superior Mesenteric Arterial and Ascending Aortic Aneurysms.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 155-162.                       | 1.1  | 60        |
| 12 | Geometric Characterization of Patient-Specific Total Cavopulmonary Connections and its Relationship to Hemodynamics. JACC: Cardiovascular Imaging, 2014, 7, 215-224.                                                                                                              | 2.3  | 59        |
| 13 | Experimental and numeric investigation of Impella pumps as cavopulmonary assistance for a failing<br>Fontan. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 563-569.                                                                                                  | 0.4  | 53        |
| 14 | Comparing Pre- and Post-operative Fontan Hemodynamic Simulations: Implications for the Reliability of Surgical Planning. Annals of Biomedical Engineering, 2012, 40, 2639-2651.                                                                                                   | 1.3  | 52        |
| 15 | Individualized computer-based surgical planning to address pulmonary arteriovenous malformations<br>in patients with a single ventricle with an interrupted inferior vena cava and azygous continuation.<br>Journal of Thoracic and Cardiovascular Surgery, 2011, 141, 1170-1177. | 0.4  | 48        |
| 16 | Numerical, Hydraulic, and Hemolytic Evaluation of an Intravascular Axial Flow Blood Pump to<br>Mechanically Support Fontan Patients. Annals of Biomedical Engineering, 2011, 39, 324-336.                                                                                         | 1.3  | 47        |
| 17 | Visualization of flow structures in Fontan patients using 3-dimensional phase contrast magnetic resonance imaging. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 1108-1116.                                                                                          | 0.4  | 45        |
| 18 | Hemodynamic Modeling of Surgically Repaired Coarctation of the Aorta. Cardiovascular Engineering and Technology, 2011, 2, 288-295.                                                                                                                                                | 0.7  | 44        |

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A Machine Learning Approach to Management of HeartÂFailure Populations. JACC: Heart Failure, 2020, 8,<br>578-587.                                                                                                                                                                 | 1.9  | 44        |
| 20 | Electronic health record phenotype in subjects with genetic variants associated with arrhythmogenic right ventricular cardiomyopathy: a study of 30,716 subjects with exome sequencing. Genetics in Medicine, 2017, 19, 1245-1252.                                                | 1.1  | 43        |
| 21 | Preliminary clinical experience with a bifurcated Y-graft Fontan procedure—A feasibility study.<br>Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 383-389.                                                                                                            | 0.4  | 42        |
| 22 | Prevalence and Electronic Health Record-Based Phenotype of Loss-of-Function Genetic Variants in<br>Arrhythmogenic Right Ventricular Cardiomyopathy-Associated Genes. Circulation Genomic and<br>Precision Medicine, 2019, 12, e002579.                                            | 1.6  | 42        |
| 23 | A genome-first approach to aggregating rare genetic variants in LMNA for association with electronic health record phenotypes. Genetics in Medicine, 2020, 22, 102-111.                                                                                                           | 1.1  | 42        |
| 24 | Simulating hemodynamics of the Fontan Y-graft based on patient-specific inÂvivo connections. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 663-670.                                                                                                                  | 0.4  | 39        |
| 25 | Patients with repaired tetralogy of Fallot suffer from intra- and inter-ventricular cardiac<br>dyssynchrony: a cardiac magnetic resonance study. European Heart Journal Cardiovascular Imaging,<br>2014, 15, 1333-1343.                                                           | 0.5  | 36        |
| 26 | Left and right ventricular dyssynchrony and strains from cardiovascular magnetic resonance feature<br>tracking do not predict deterioration of ventricular function in patients with repaired tetralogy of<br>Fallot. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 49. | 1.6  | 36        |
| 27 | Energetic Implications of Vessel Growth and Flow Changes Over Time in Fontan Patients. Annals of<br>Thoracic Surgery, 2015, 99, 163-170.                                                                                                                                          | 0.7  | 35        |
| 28 | Fontan Pathway Growth: A Quantitative Evaluation of Lateral Tunnel and Extracardiac<br>Cavopulmonary Connections Using Serial Cardiac Magnetic Resonance. Annals of Thoracic Surgery,<br>2014, 97, 916-922.                                                                       | 0.7  | 32        |
| 29 | Reproducibility of cine displacement encoding with stimulated echoes (DENSE) cardiovascular<br>magnetic resonance for measuring left ventricular strains, torsion, and synchrony in mice. Journal<br>of Cardiovascular Magnetic Resonance, 2013, 15, 71.                          | 1.6  | 31        |
| 30 | Obesity reduces left ventricular strains, torsion, and synchrony in mouse models: a cine displacement<br>encoding with stimulated echoes (DENSE) cardiovascular magnetic resonance study. Journal of<br>Cardiovascular Magnetic Resonance, 2013, 15, 109.                         | 1.6  | 30        |
| 31 | Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?. Journal of Biomechanics, 2017, 50, 172-179.                                                                                                                       | 0.9  | 29        |
| 32 | Association between left ventricular mechanics and diffuse myocardial fibrosis in patients with<br>repaired Tetralogy of Fallot: a cross-sectional study. Journal of Cardiovascular Magnetic Resonance,<br>2017, 19, 100.                                                         | 1.6  | 29        |
| 33 | Deep-learning-assisted analysis of echocardiographic videos improves predictions of all-cause mortality. Nature Biomedical Engineering, 2021, 5, 546-554.                                                                                                                         | 11.6 | 29        |
| 34 | Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR.<br>Journal of Cardiovascular Magnetic Resonance, 2018, 20, 63.                                                                                                                    | 1.6  | 28        |
| 35 | Validation of in vivo 2D displacements from spiral cine DENSE at 3T. Journal of Cardiovascular<br>Magnetic Resonance, 2015, 17, 5.                                                                                                                                                | 1.6  | 24        |
| 36 | Right Ventricular Strain, Torsion, and Dyssynchrony in Healthy Subjects Using 3D Spiral Cine DENSE<br>Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 2017, 36, 1076-1085.                                                                                      | 5.4  | 23        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of<br>Undiagnosed Structural Heart Disease Detectable by Echocardiography. Circulation, 2022, 146, 36-47.                            | 1.6 | 21        |
| 38 | Relationship of Single Ventricle Filling and Preload to Total Cavopulmonary Connection Hemodynamics. Annals of Thoracic Surgery, 2015, 99, 911-917.                                                                                | 0.7 | 20        |
| 39 | SURGEM: A solid modeling tool for planning and optimizing pediatric heart surgeries. CAD Computer Aided Design, 2016, 70, 3-12.                                                                                                    | 1.4 | 20        |
| 40 | Treatment planning for a TCPC test case: A numerical investigation under rigid and moving wall assumptions. International Journal for Numerical Methods in Biomedical Engineering, 2013, 29, 197-216.                              | 1.0 | 19        |
| 41 | Telemetric Blood Pressure Assessment in Angiotensin II-Infused ApoE-/- Mice: 28 Day Natural History and Comparison to Tail-Cuff Measurements. PLoS ONE, 2015, 10, e0130723.                                                        | 1.1 | 16        |
| 42 | Numerical and experimental investigation of pulsatile hemodynamics in the total cavopulmonary connection. Journal of Biomechanics, 2013, 46, 373-382.                                                                              | 0.9 | 15        |
| 43 | Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 94.                                                    | 1.6 | 15        |
| 44 | Clinical Findings and Diagnostic Yield of Arrhythmogenic Cardiomyopathy Through Genomic<br>Screening of Pathogenic or Likely Pathogenic Desmosome Gene Variants. Circulation Genomic and<br>Precision Medicine, 2021, 14, e003302. | 1.6 | 14        |
| 45 | Monogenic and Polygenic Contributions to QTc Prolongation in the Population. Circulation, 2022, 145, 1524-1533.                                                                                                                    | 1.6 | 14        |
| 46 | The genetic architecture of Plakophilin 2 cardiomyopathy. Genetics in Medicine, 2021, 23, 1961-1968.                                                                                                                               | 1.1 | 13        |
| 47 | Laser Flow Measurements in an Idealized Total Cavopulmonary Connection With Mechanical Circulatory Assistance. Artificial Organs, 2011, 35, 1052-1064.                                                                             | 1.0 | 12        |
| 48 | Managing Secondary Genomic Findings Associated With Arrhythmogenic Right Ventricular<br>Cardiomyopathy. Circulation Genomic and Precision Medicine, 2018, 11, e002237.                                                             | 1.6 | 11        |
| 49 | Haemodynamic comparison of a novel flow-divider Optiflo geometry and a traditional total cavopulmonary connection. Interactive Cardiovascular and Thoracic Surgery, 2013, 17, 1-7.                                                 | 0.5 | 10        |
| 50 | Quantification of left ventricular volumes, mass, and ejection fraction using cine displacement<br>encoding with stimulated echoes (DENSE) MRI. Journal of Magnetic Resonance Imaging, 2014, 40,<br>398-406.                       | 1.9 | 10        |
| 51 | Left ventricular mechanical dysfunction in diet-induced obese mice is exacerbated during inotropic<br>stress: a cine DENSE cardiovascular magnetic resonance study. Journal of Cardiovascular Magnetic<br>Resonance, 2015, 17, 75. | 1.6 | 10        |
| 52 | Hemodynamic Impact of Superior Vena Cava Placement in the Y-Graft Fontan Connection. Annals of<br>Thoracic Surgery, 2016, 101, 183-189.                                                                                            | 0.7 | 10        |
| 53 | Uniquely shaped cardiovascular stents enhance the pressure generation of intravascular blood pumps. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, 704-709.                                                            | 0.4 | 9         |
| 54 | 2D cine DENSE with low encoding frequencies accurately quantifies cardiac mechanics with improved image characteristics. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 93.                                               | 1.6 | 9         |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2016, 18, 54.                                                 | 1.6 | 9         |
| 56 | Genetic counseling for patients with positive genomic screening results: Considerations for when the genetic test comes first. Journal of Genetic Counseling, 2021, 30, 634-644.                                                                    | 0.9 | 9         |
| 57 | Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks. , 2020, , .                                                                                                                                     |     | 9         |
| 58 | Loss-of-Function <i>FLNC</i> Variants Are Associated With Arrhythmogenic Cardiomyopathy<br>Phenotypes When Identified Through Exome Sequencing of a General Clinical Population. Circulation<br>Genomic and Precision Medicine, 2022, 15, .         | 1.6 | 8         |
| 59 | Rare Coding Variants Associated With Electrocardiographic Intervals Identify Monogenic Arrhythmia<br>Susceptibility Genes: A Multi-Ancestry Analysis. Circulation Genomic and Precision Medicine, 2021, 14,<br>e003300.                             | 1.6 | 7         |
| 60 | Of mice (dogs) and men: getting to the heart of obesity-associated cardiac dysfunction. Diabetologia, 2016, 59, 9-12.                                                                                                                               | 2.9 | 4         |
| 61 | Assessing the generalizability of temporally coherent echocardiography video segmentation. , 2021, , .                                                                                                                                              |     | 4         |
| 62 | 3D-Encoded DENSE MRI with Zonal Excitation for Quantifying Biventricular Myocardial Strain During a Breath-Hold. Cardiovascular Engineering and Technology, 2021, , 1.                                                                              | 0.7 | 4         |
| 63 | Genomic Screening for Pathogenic Transthyretin Variants Finds Evidence of Underdiagnosed Amyloid<br>Cardiomyopathy From Health Records. JACC: CardioOncology, 2021, 3, 550-561.                                                                     | 1.7 | 4         |
| 64 | Generalizability and quality control of deep learning-based 2D echocardiography segmentation<br>models in a large clinical dataset. International Journal of Cardiovascular Imaging, 2022, 38, 1685-1697.                                           | 0.7 | 4         |
| 65 | Using a respiratory navigator significantly reduces variability when quantifying left ventricular<br>torsion with cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance,<br>2017, 19, 25.                                 | 1.6 | 3         |
| 66 | Rad GTPase Deletion Attenuates Post-Ischemic Cardiac Dysfunction andÂRemodeling. JACC Basic To<br>Translational Science, 2018, 3, 83-96.                                                                                                            | 1.9 | 3         |
| 67 | Magnetic resonance imaging-guided surgical design: can we optimise the Fontan operation?.<br>Cardiology in the Young, 2013, 23, 818-823.                                                                                                            | 0.4 | 2         |
| 68 | Optimal configuration of respiratory navigator gating for the quantification of left ventricular<br>strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. Journal of<br>Magnetic Resonance Imaging, 2017, 45, 786-794. | 1.9 | 2         |
| 69 | Typical readout durations in spiral cine DENSE yield blurred images and underestimate cardiac strains at both 3.0â€⊤ and 1.5â€⊤. Magnetic Resonance Imaging, 2018, 54, 90-100.                                                                      | 1.0 | 2         |
| 70 | Pulsatile Hemodynamics of the Fontan Connection: A Tri-Modal Investigation. , 2011, , .                                                                                                                                                             |     | 1         |
| 71 | High resolution cine displacement encoding with stimulated echoes (DENSE) at 3T with navigator feedback for quantification of cardiac mechanics. Journal of Cardiovascular Magnetic Resonance, 2014, 16, P48.                                       | 1.6 | 1         |